💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
针对电网对电动汽车接纳能力评估的问题,提出了节点电价的概念。这一概念旨在通过分析电动汽车充电负荷对电网节点性能的影响,从而制定能够反映各项性能指标的节点电价。通过发布电价信息,电网可以积极参与制定电动汽车充电策略,从而有效降低薄弱节点对电网接纳能力的负面影响。这一举措不仅有助于优化电网资源配置,还有助于建立基于节点电价的电网对电动汽车接纳能力评估模型,为电动汽车的大规模普及提供了可行的解决方案。
在这一模型中,节点电价的设定将成为一个关键因素,旨在激励用户在电网负荷较低的时段进行充电,从而平衡电网负荷并减少对薄弱节点的过度依赖。同时,该模型还将考虑不同节点的特定性能指标,如供电稳定性、容量利用率等,以确保对电网接纳能力的全面评估。通过这种综合考量,电网可以更好地应对电动汽车的快速增长,为未来的清洁能源交通提供可靠的支持。
此外,基于节点电价的电网对电动汽车接纳能力评估模型还将为电动汽车充电策略的优化提供有力支持。通过合理制定节点电价,电网可以引导用户在合适的时间和地点进行充电,避免出现过载现象,从而提高电网的整体稳定性和可靠性。这一模型的实施将为电动汽车的普及和电网的升级提供双赢的解决方案,推动清洁能源交通和可持续能源发展迈出更为坚实的步伐。
针对电网对电动汽车接纳能力评估的问题,提出了节点电价的概念,通过分析电动汽车充电负荷下电网节点性能,制定反映各项性能指标的节点电价。电网通过发布电价信息参与制定电动汽车充电策略,从而降低薄弱节点对电网接纳能力的负面影响,建立了基于节点电价的电网对电动汽车接纳能力评估模型。
一、节点电价的核心机理与作用(A1)
节点电价是由系统能量价格、阻塞价格和网损价格三部分构成的边际成本价格信号。其数学表达式为:
关键作用机制:
- 时空价值映射:节点电价实时反映电网不同区域的电力稀缺程度。例如,负荷中心节点在用电高峰时电价可达541元/MWh,而偏远节点可能仅205元/MWh。
- 阻塞信号传递:当输电线路接近容量极限时,阻塞价格分量显著上升,如美国PJM市场曾出现阻塞价格占比超总电价60%的情况。
- 投资引导功能:高价节点吸引发电侧投资(如新建燃气电站),而长期高价差区域会推动输电线路扩建。
二、电网接纳能力评估指标体系(A2)
1. 基本定义与分类
- 规划阶段接纳能力:在满足电压、线路载流、谐波等约束下,配电网允许接入的最大EV容量,需通过N-1校验、潮流计算等验证。
- 运行阶段消纳能力:考虑调峰能力、负荷跟踪等动态约束,评估实际可消纳的EV充电功率。
2. 核心约束指标
评估维度 | 具体指标 | 计算方法示例 |
---|---|---|
电压稳定性 | 电压偏差率、三相不平衡度、VCPI电压崩溃指数 | ΔU=U实际−U额定U额定×100 |
热稳定约束 | 线路/变压器负载率、反向载流比 | ηT=PmaxSN |
电能质量 | 总谐波畸变率(THD)、电压闪变值 | IEEE 519标准限值 |
短路电流 | 对称短路电流有效值、非对称冲击电流 | IEC 60909标准计算 |
三、EV接入对电网的复合影响机制(A3)
1. 负荷特性改变
- 时空双重随机性:EV充电需求受出行链(日行驶里程、SOC状态)和用户行为(充电时段偏好)共同影响。研究表明,无序充电可使居民区峰值负荷增加30%。
- 谐波污染特征:快充桩(50kW以上)接入导致5次、7次谐波含量提升,典型案例中THD从3%升至8%。
2. 与节点电价的耦合关系
- 电价响应弹性:分时电价可降低峰谷差12-18%,但节点电价的动态调整效果更显著。
- 阻塞-负荷正反馈:EV集中充电加剧线路阻塞→节点电价升高→用户向低价节点迁移→引发新的局部过载。
四、基于节点电价的接纳能力评估模型构建
1. 模型框架
2. 关键技术实现
-
多时间尺度耦合:
- 日前市场:基于负荷预测生成基准节点电价
- 实时市场:每15分钟更新电价,反映线路阻塞、EV充电突变等事件
-
双层优化模型:
-
上层目标:最大化EV接纳容量
-
下层约束:节点电压、线路潮流、短路电流等安全限值
-
- 价格-负荷联动算法:
- 采用改进量子粒子群算法,将节点电价作为适应度函数:
- 采用改进量子粒子群算法,将节点电价作为适应度函数:
其中α,β为电压稳定与经济效益的权重因子。
五、典型案例分析
1. 江苏扬中110kV变电站改造
- 原始状态:主变容量31.5MVA,EV渗透率15%时负载率达92%。
- 节点电价调控:在18:00-21:00设置1.5倍电价,引导23%充电负荷转移至凌晨,负载率降至78%。
2. IEEE 33节点系统仿真
场景 | 最大EV接入容量(MW) | 平均节点电价(元/MWh) | 关键约束节点 |
---|---|---|---|
无序充电 | 4.2 | 426 | 节点18、28 |
节点电价引导 | 5.8 | 398 | 节点31 |
拓扑优化+电价 | 6.5 | 375 | 无越限 |
六、未来研究方向
- 多能源耦合:将分布式光伏、储能系统纳入节点电价模型,构建"光-储-充"协同优化框架。
- 车网互动(V2G) :开发双向电价机制,利用EV储能特性平抑电价波动。
- 人工智能应用:基于LSTM预测节点电价趋势,结合强化学习实现实时调控。
📚2 运行结果
部分代码:
function [schedule]=cvxSchedule(evtmp,Tcur,sensitivity)
% evfile包含的数据:当前soc行,接入时刻,离网时刻
evtmp(:,1)=[];
[~,EVnum]=size(evtmp);
Pchar=3;
Pdis=-3;
Eini=evtmp(1,:)';
Efin=evtmp(2,:)';
Ecap=ones(EVnum,1)*15;
Ezero=zeros(EVnum,1);
Tleft=zeros(EVnum,1); %每辆EV的窗口大小
for i=1:EVnum
Tleft(i)=evtmp(4,i)-Tcur+1;
end
time=max(Tleft); %总窗口大小
%检查是否结束
if time<1
schedule=0;
return;
end
sense=sensitivity(:,Tcur:Tcur+time-1);
baseload=ones(1,time)*5; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%凸优化
cvx_begin
variables z(time) x(EVnum,time);
minimize(sum(z+0.5*z.^2));
subject to
z==baseload'+sum(x)'; % 总负荷=基础负荷+EV负荷
%离网时间限制
for i=1:EVnum
x(i,Tleft(i)+1:time)==0;
end
%充放电速率限制
for i=1:EVnum
if(evtmp(5,i)==0)
0<=x(i,:)<=Pchar;
else
Pdis<=x(i,:)<=Pchar;
end
end
%每时刻电量限制
for i=1:time
Ezero<=Eini+sum(x(:,1:i),2)<=Ecap;
end
% 离网时总电量大于等于目标电量
Eini+sum(x,2)>=Efin;
cvx_end
schedule=x(:,1);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]宫龙威.提高电网接纳分布式光伏发电能力的研究[D].燕山大学,2015.
[2]罗庆.电动汽车充电对电网的影响及有序充电研究[D].浙江大学,2016.
[3]郑颖.高渗透率电动汽车接入下的配电网静态稳定性分析及有序充电策略研究[D].华中科技大学,2016.