数据驱动的威胁狩猎语言模型研究进展

本文梳理了数据驱动的威胁狩猎中语言模型的研究进展,探讨了构建细粒度评估指标、多源数据融合、依赖爆炸缓解以及多模态分析的重要性。文章指出,面对高级威胁,需要解决数据依赖爆炸问题,探索标准化语言模型,以支持多源异构数据的统一分析。同时,强调了威胁狩猎语言模型在表达力、鲁棒性和隐私防护方面的挑战与未来趋势。
摘要由CSDN通过智能技术生成

摘要

【目的】梳理数据驱动下,面向主动式威胁狩猎的语言模型研究进展,为高级威胁的检测、溯源提供技术前瞻。【方法】结合安全前沿学术与工业进展,从威胁狩猎的评估指标构建,多模多维多源数据的融合、依赖爆炸缓解及分析,和多模态威胁狩猎语言的建模等多个层次分别介绍总结相关研究。【结果】结合威胁狩猎的关键需求与相关技术趋势,从支持的数据类型、模式类型、建模方法、实时性等维度,全面总结了数据驱动威胁狩猎与威胁狩猎语言模型的研究现状与研究趋势。【结论】面对高对抗性APT等威胁检测取证场景,一方面需要构建多源异构的融合数据基础设施,并解决数据的依赖爆炸问题;另一方面,仍需要探索标准化、灵活的语言模型,来支持多模态、多源、多维数据的统一分析。

关键词: 威胁狩猎; 安全运营; 高级持续性威胁

引言

在数据过载的时代背景下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值