状态转移矩阵求解

状态转移矩阵\phi (t,t_{0})的求解


例:\dot{x}(t)=\begin{bmatrix} -sint &0 \\ 0& -cost \end{bmatrix}x(t)

求状态转移矩阵。


STEP1:写出齐次方程。

\dot{x_{1}}(t)=-sint\cdot x_{1}(t)  ①

\dot{x_{2}}(t)=-cost\cdot x_{2}(t)  ②

STEP2:求方程在t_{0}=0条件下的解:x_{i}(t)=\int_{t_{0}}^{t}\dot{x_{i}}(\tau ,t_{0})d\tau +x_{i}(0)

x_{1}(t)=\int_{0}^{t}(-sin\tau )\cdot x_{1}(0)d\tau +x_{1}(0)=cost\cdot x_{1}(0)

x_{2}(t)=\int_{0}^{t}(-cos\tau )\cdot x_{2}(0)d\tau +x_{2}(0)=(1-sint)\cdot x_{2}(0)

STEP3:取线性无关的初始状态,求出基本矩阵。

x(0)=\begin{bmatrix} 1\\0 \end{bmatrix}时:x(t)=\begin{bmatrix} cost\\ 0 \end{bmatrix}

x(0)=\begin{bmatrix} 0\\1 \end{bmatrix}时:x(t)=\begin{bmatrix} 0\\ 1-sint \end{bmatrix}

由于两个初始状态线性无关,所以基本矩阵为:

X(t)=\begin{bmatrix} cost &0 \\ 0& 1-sint \end{bmatrix}

STEP4:求基本矩阵的逆矩阵X^{-1}(t)

X^{-1}(t)=\begin{bmatrix} \frac{1}{cost} & 0\\ 0& \frac{1}{1-sint} \end{bmatrix}

STEP5:状态转移矩阵为:\phi (t,t_{0})=X(t)\cdot X^{-1}(t_{0})

\phi (t,t_{0})=\begin{bmatrix} \frac{cost}{cost_{0}}& 0\\ 0& \frac{1-sint_{0}}{1-sint} \end{bmatrix}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值