《数值分析》李庆扬 01 误差分析

本文详细介绍了数值分析中的误差分析,包括模型误差、截断误差、观测误差和舍入误差。此外,讨论了算法的稳定性和不稳定性,并通过实例解释了绝对误差、相对误差及其限值的概念。还提到了有效数字的定义和重要性,以及数值计算误差分析,特别是微分中值定理在误差传播中的应用。
# 写于2020.12.29
# 教材《数值分析》 第五版 李庆扬 王能超 易大义
# 总结不易 望赞鼓励

0 内容串联

1. 误差分析
2. 插值法:https://blog.csdn.net/wistonty11/article/details/112131217




1. 误差种类

1.1 模型误差

用计算机解决科学计算问题首先要建立数学模型,它是对被描述的实际问题进行抽象、简化而得到的,因而是近似的.我们把数学模型与实际问题之间出现的这种误差称为模型误差.

1.2 截断误差

由实际问题建立起来的数学模型,在很多情况下要得到准确解是困难的,通常要用数值方法求它的近似解,例如常把无限的计算过程用有限的计算过程代替,这种模型的准确解和由数值方法求出的近似解之间的误差称为截断误差。因为截断误差是数值计算方法固有的,因此又称方法误差。

例如,函数可展开为无穷幂级数:
在这里插入图片描述
若取级数的起始若干项的部分和作为时函数的近似计算公式,例如取
在这里插入图片描述

则由于它的第四项和之后的各项都舍弃了,自然就产生了误差。这就是由于截断了无穷级数自第四项起的后段而产生的截断误差。

1.3 观测误差

观测误差,是指使用计量器具的过程中,由于观测者主观所引起的误差,比如读数,主观造成的

1.4 舍入误差

是指运算得到的近似值和精确值之间的差异。比如当用有限位数的浮点数来表示实数的时候(理论上存在无限位数的浮点数)就会产生舍入误差。舍入误差是量化误差的一种形式。 如果在一系列运算中的一步或者几步产生了舍入误差,在某些情况下,误差会随着运算次数增加而积累得很大,最终得出没有意义的运算结果。机器字长有限 会对超出的部分舍入

1.5 数值分析误差对象

模型误差 观测误差不是数值分析讨论的内容。计算方法主要研究截断误差和摄入误差在计算过程种的传播和计算结果的影响,以提高计算的精度。

2. 一个例子讲解算法稳定和不稳定 123

误差逐步递减, 这样的算法称为稳定的算法
误差呈递增走势,造成这种情况的是不稳定的算法

在这里插入图片描述
在这里插入图片描述

3. 误差(*****)

3.1 绝对误差 e(x*)=x*-x

  • 估值与真实值之间的差

3.2 绝对误差限 |e(x*)|=|x*-x|≤ε(x*)

  • 上面这个东西没法测 因为真实的x不知道;所以用了个ε(x*)
  • e* 理论上讲是唯一确定的,可能取正,也可能取负。
  • e* > 0 不唯一,当然 e* 越小越具有参考价值。
    但是上面只能表示误差数值上的大小,无法表示误差对于这个真实值的影响

3.3 相对误差

e r ∗ ( x ∗ ) e_r^*(x*) er(x)= ( x ∗ − x ) x \frac{(x*-x)}{x} xxx

也是具体不知道多少 因为x真正值不知道多少

3.4 相对误差限

ε r ∗ ( x ∗ ) ε_r^*(x*) εr(x)= ( x ∗ − x ) ∣ x ∗ ∣ \frac{(x*-x)}{|x^*|}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊老羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值