orb-slam2跑通EuRoC数据集,并用evo对其进行评估(详细)

evo的安装:

打开终端,运行下面的指令:

sudo apt install python-pip
pip install evo --upgrade --no-binary evo
pip install evo --upgrade --no-binary evo --user

下载EoRoC数据集,并用orb-slam2跑通:

(1)下载数据集:下载地址:http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

我下载的是MH05的包。将下载好的数据集解压并放在home文件夹下,打开终端,运行如下命令:

cd /home/frank/下载/ORB_SLAM2-master
./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml /home/用户名/EuRoC/mav0/cam0/data Examples/Monocular/EuRoC_TimeStamps/MH05.txt 

第一条指令是指进入你的orb -slam2 安装包所在的位置打开终端,第二条指令中的用户名是你的客户机的用户名,而

### 回答1: 要运行ORB-SLAM2的Euroc数据集,您需要按照以下步骤操作: 1.下载Euroc数据集并解压缩。 2.下载ORB-SLAM2代码并编译。 3.将ORB-SLAM2的配置文件设置为使用Euroc数据集。 4.运行ORB-SLAM2并加载Euroc数据集。 5.观察ORB-SLAM2的输出结果并进行分析。 需要注意的是,ORB-SLAM2的Euroc数据集需要较高的计算资源和较长的运行时间。因此,您需要确保您的计算机具有足够的硬件资源,并且您有足够的时间来运行实验。 ### 回答2: ORB-SLAM2是一个开源的、基于视觉的SLAM系统,可以使用单个RGB-D或单目摄像头来创建实时3D地图,同时定位摄像头和跟踪系统的位置。可以应用于机器人、无人机、现代智能推进汽车等领域。而Euroc数据集则是一组经过校准处理的IMU (惯性测量单元)和摄像机数据,用于评估视觉SLAM的精度。 运行ORB-SLAM2和Euroc数据集的过程可以分为以下几个步骤: 1. 下载ORB-SLAM2和Euroc数据集ORB-SLAM2可以从GitHub repository中克隆得到。而Euroc数据集可以直接从它们的官方网站下载。需要注意的是,在ORB-SLAM2中,每个example的数据存放在它们各自的文件夹中,因此需要把Euroc数据集放在example所在的对应文件夹中。 2. 启动ORB-SLAM2。 ORB-SLAM2的执行文件位于ORB-SLAM2文件夹中,可以打开终端,cd到ORB-SLAM2文件夹,然后输入./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml ~/EuRoC_MAV_dataset/MH_01_easy/mav0/cam0 ~/EuRoC_MAV_dataset/MH_01_easy/mav0/imu0/data.csv ,其中第一个参数表示执行文件的路径,第二个参数是ORB-SLAM2的词汇表,第三个参数是配置文件的路径,接下来的两个参数分别是摄像头和IMU数据文件路径。 3. 运行Euroc数据集ORB-SLAM2进行初始化之前,需要打开另一个终端运行Euroc数据集。需要注意的是,必须先运行IMU,然后再运行相机。 运行IMU时,可以通过终端输入 rostopic echo /imu0/data_raw 启动ROS节点,查看imu0的数据流。运行相机时,需要先安装ROS和euroc数据集软件包。 4. 实时监控ORB-SLAM2运行状态 ORB-SLAM2提供了一个实时监控窗口,可以实时显示SLAM系统的状态和结果。可以通过终端输入 rqt_image_view 来打开这个实时监控窗口。 总之,ORB-SLAM2和Euroc数据集的结合使用可以帮助研究人员评估SLAM系统的效果和精度。尽管这个过程可能需要一些编程和配置方面的知识,但它为机器人、无人机等领域的发展提供了重要的参考和启示。 ### 回答3: ORB-SLAM2是一种基于光流法的视觉SLAM方法,它可以实现三维空间中自主移动物体的实时跟踪和建图。在ORB-SLAM2中,图像特征被提取为局部特征点和描述符,并通过光流法进行跟踪和匹配,根据这些匹配点进行位姿估计和三维重建。 运行euroc数据集ORB-SLAM2的一项重要任务。euroc数据集包含了多种不同场景下的图像序列,可以用来测试SLAM算法的鲁棒性和精度。运行euroc数据集需要以下步骤: 1. 下载euroc数据集以及ORB-SLAM2代码。euroc数据集可以从官方网站下载,ORB-SLAM2代码可以从GitHub上下载。 2. 安装必要的依赖项。ORB-SLAM2依赖于opencv、Eigen、g2o等库,需要先安装这些库。 3. 编译ORB-SLAM2代码。在终端中进入ORB-SLAM2代码目录,运行make命令即可。 4. 配置参数。在ORB-SLAM2的配置文件中,需要设置数据集路径、相机参数、ORB特征参数等内容,以适配euroc数据集。 5. 运行ORB-SLAM2。在终端中进入ORB-SLAM2代码目录,运行以下命令: ./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml **数据集路径** 其中,需要将**数据集路径**替换为euroc数据集的路径。 6. 查看结果。ORB-SLAM2会在运行过程中生成位姿估计结果和三维地图,可以通过rviz等工具可视化。 在运行euroc数据集时,需要注意以下问题: 1. 需要设置正确的相机参数。euroc数据集中不同场景下使用的相机参数不同,需要根据实际情况设置相应的参数。 2. 需要选择正确的ORB特征参数。ORB特征的参数(如特征点数量、描述符维度等)会影响ORB-SLAM2的跟踪和匹配性能,在选择时需要根据实际情况调整。 3. 需要注意数据集中存在的异常情况。euroc数据集中可能存在遮挡、快速运动等异常情况,需要进行相应的处理才能得到准确的位姿估计和建图结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

渣渣的小王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值