GAMES 图形学系列笔记(二十五)

GAMES102:几何建模与处理 - P13:曲面重建 - GAMES-Webinar - BV1NA411E7Yr

好 那个同学们晚上好啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

今天开始我们的Games102的课程,跟以前一样 我们首先讲一下这是作业的那个情况。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

不知不觉我们的课程已经快接近尾声了,这是第9次作业,也非常高兴看到很多同学还是在坚持着这个作业。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是作业的主要任务呢 是给定一个网格,然后使用那个二次误差方法,把网格进行简化。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个简化的顶点可以自己控制,那么我们看一下这是一些同学的报告中的一些截图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个总体上做的还是不错的,这一次也有同学做了一些视频,我们也看一下,这个同学写了一个滑杆,这滑杆呢 可以去控制顶点个数,那么顶点的数量是显示在这个地方 是吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以他可以对网格进行很多简化,那么这是另外一位同学,这个同学做的也挺好,这是个小松鼠的一个网格,可以看到他的那个顶点不断在减少,到后面,可能这个同学没有往回加。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们再看下一个,这同学呢 也是一样,他用颜色表示了一些信息,可以看到他这边窗口可以控制,他把以前的作业跟现在的作业都集中在一个窗口上面,可以看到那个以前写的那个曲率计算,拉帕拉斯 smoothing。

还有这是简化都写的一块。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

他实现了那个Gulate的算法,那么这是另外一位同学的QEM,我们跳来哈,这个是Armadino,这个go应该是加点,那么他还可以减点,所以他可以从我看跳了下来看一下啊,看这个兔子,这个加密。

然后这个是简化,这是往回加,所以他应该是记录了这个简化的这样一个过程,基本上都还是,比较好的实现了这个算法本身,同样我们也会把这个优秀作业,包括代码报告,这几位同学的,作业情况都会放在网上。

大家可以课后进行参考对比。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因为每次作业的话,对这个同学们来说,你可以去对比一下这些比较好的同学的报告,这个代码有利提高,当然还有一些同学说,那么在后面补这个都没关系,因为马上可能在学校同学是放假,这个可以利用假期在进行一些。

课程的一个跟进,还作业的补补充都没问题,对于企业员工来说,可能相对年终比较忙一点,以后再找时间,好了,今天我们的这个一个重要的内容就是曲面重建,今天内容比较多,所以我中间可能会跳跳得很快。

因为后面课时也不多了,重建是我们那个几何处理里面,一个非常重要的一个内容,就是建模型对吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好 那么建模型的modeling,实际上是有两种主要方式,一种是design叫设计,设计的就是说这个物体是不存在的,你怎么去凭空让它设计出来,就像设计一些这个汽车表面等等。

这是我们这个Games 102上半级这个内容,就是怎么用样条,认不出曲线,进行编辑去设计新的物体,这个是叫design,当然后面我们还会讲这个通过已知模型进行修改。

这个编辑editing跟deformation,也是叫设计,还有一种呢,就是说这个物体是存在的,是我们真实空间,我们世界存在一个物体,只不过呢,我要去把它变成三位模型,进行数字化,进行数字化的构建。

这个呢,就叫做这个也叫逆向工程,扫描重建,今天我们重点是介绍第二部分重建,因为第一部分设计啊,有些工这个工具,NURBS啊,这个工具前面都已经讲过啊。

可以那么这个editing跟deformation呢,我们下个礼拜还会再提一下啊,好,我们重点是在讲下面部分曲面重建,你可以看到我们自然自然中,我们世界中存在了好多这种实际模型,像这个马太飞燕。

还有这个是大卫雕塑啊,米开朗基罗的雕塑,那么如果这些物体啊,如果这个不把它数字化过来,可能落干年后,这些这些物体会经过风化消失掉了,像下面这个兵马俑,上次兵马俑故事,大家如果知道的话。

上次兵马俑被挖掘出来的时候,上都是些碎片啊,那么靠人工啊,把这些兵马俑的身体呀,头啊,拼起来才拼成了这么多啊,这个壮观的兵马俑,当然有些像像这个兵马俑的头就找不着了,是吧,那么如果你有数字化。

把这个兵马俑的数字化,这个变成三位模型,那么可以利用一些算法的这个过程进行拼装,那么会加快这个效率,所以对三位模型不仅是数字化,不仅是对三位模型的一个考虑化,比如说数字博物馆啊。

还有一些后面的一些处理啊,也可以帮助人们去做一些更多的处理的一些应用,好,那么这个重建的跟那个叫印象工程也有关系啊,这个我以前提到过一次,就是比如说有些零件我生产不出来,但我也不知道它的数学表达。

那怎么办呢,我我从国外或者是从哪里买到一个零件啊,然后进行它进行数字化,数字化完以后呢,这个数字化,这个这个数学表达,当然也可以用以前的数学表达啊,这个B样条,当然也可以是网格啊。

最后又把它制造出来更多的,这样的话,我们就掌握了这个制造技术,因为从数字化到这个模型就是一个制造啊,所以这个印象工程早年印象工程里面,这个重建是一个非常重要的一个部分。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那我们今天说讲的就是怎么样从一个实际物体去得到它的数字化的三位网格网格啊,那么我们经常用的啊,在我们图形学里面这个叫Stanford Bunny,叫斯坦福兔子啊,这个非常非常有名的模型,是吧。

在很多图形学的文章中看到,事实上是他是是一个真实的一个这样的右边这样一个陶瓷的一个兔子啊,这故事是一个叫Greek Turk,以前Greek Turk,他当时在斯坦福应该是1992年左右。

斯坦福都不是后啊,至于他当时走走进一家这个纪念品商店,看到这样一个兔子很可爱,他就想能不能把它变成一个数字化模型,然后可以对它进行处理啊,就是他当时就把它扫描下来了啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个Stanford Bunny是非常有名的,另外一个图形学里面比较有名的叫Utah茶壶,Utah Teapot就是这个,在Utah美国Utah州,这个茶是比较有名的,就是茶壶经常看得到啊。

这个呢不是扫描的,这个是纯属靠人工通过避氧条,你可以看到他这个这个茶壶,事实上是有有有有32片,比热的这个片拼起来成一个这样的光滑流行,然后光滑那个曲面啊,然后这个曲面片跟曲面片之间保持CR连续。

所以这个茶壶看起来非常非常光滑啊,这个是个数学精确表达的一个,这个这个茶壶好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我们我们今天的内容比较多啊,我们这样的内容可以看到,我再大致讲讲一下说,你这个从从一个真实模型啊,通过一些传感器Sensing Devices,传感器可以是相机,摄像机扫描仪,甚至激光扫描仪等等。

然后就形成了部分点云,因为扫描过程中你要从不同视角,所以你要把这个点云给他拼起来,就就就要就把他这个注册起来,形成一个完整的点云,点云完了以后到到曲面,曲面当然还不完美,就需要进行一些修复啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

等等后处理啊,好,那我们今天啊就按这几个步骤。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,我们先看看第一个步骤叫采集啊,这个这个数据是怎么来采集,得到上面上面信息,是吧,这物体是存在的,我怎么样去采集到他表面上的那些三维点的错标啊,这个叫Anquisition采集,好,这个采集的话。

给定个模型,你采采一个点是吧,你也可以采一条线上的点,这个叫profile啊,这个这个轮廓,当然你可以采一个面上的点啊,当然你可以采他的内部的一个横截面等等,所以这里面有不同的这个这个数据的类型,好。

我们看,嗯,常见的一些这个三维模型的这个扫描采采集器呢,是有有这这些啊,就是这个激光扫描,结构光扫描啊,等等啊,这个叫叫scanner,scanner就叫扫描仪啊,就是我怎么样通过一些数学和物理的方法。

得到全面上的一个一个点的坐标,像是每个点的把它扫列出来,就叫扫描仪,好,那么还有很多不同应用中的扫描仪啊,这个包括我们这个相机也算扫描仪,因为相机是采物体表面上的颜色值啊,像这个深度相机后面会讲啊。

就不仅采颜色还会采到它的它的那个深度,还有这个更大范围的这种体验摄影啊,还有这个摇杆采到更高更大范围的这个影像啊,都都是属于一种这个这个传感器扫描仪啊,只不过我们这里是扫描的东西呢,就是要么像它的颜色。

要么它的点云啊,点的坐标啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

等等,好,那么他们是怎么工作的哈,我们一个个来,好,那么这个首先这个医学上面,用的比较多的就是这种啊,叫CT或者是核磁共振,MRI啊,就是人进去以后呢,他这边有一个设备能够扫你的这个。

比如说你的人体的一个横截面,像这里就是大脑啊,所以他是采集了一系列的这种横截面的一个图像,这个图像呢,那么输出来呢,要需要输出这个人体的一些器官啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这就是医学图像处理的一个非常重要的一个内容啊,比如说我那个采对一个人的大脑,横截面采集了这么多序列,我怎么样对这大脑啊,进行一个重建,里面有血管,有不同的组织,有利于医生来判定啊。

这个病人的一些一些这个病症啊,就是这样一个过程叫叫医学重向处理。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么医学这个采集器,人们也发明了不同的这个设备啊,有这个超声波啊,我们如果大家做过体检的话,就用过这些啊,mri核磁共振,还有X光,X光啊,就探测一些内部的一些这个器官的情况,还有CT啊。

CT稍微复杂一点啊,那么出来的东西都是这样一些,这个横截面的图像,医学图像处理算是一个比较复杂的过程啊,实际上是你要去构建里面的器官,你首先要知道这个器官在这个当前横截面的一些,这个边界。

所以所以这部分是非常重要的分割,如果你分割不准的话呢,你这个你这个重建就不可能准确啊,所以分割在这里面是占用非常重要的地位,因为在影像音讯影像的话,很多很多组织之间的这个分界线不是不是那么那么明显。

除了一些非常像骨头啊,这个边界跟这些组织的边界比较比较明显的话,其他的不是非常明显。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以这个医学中央重建还是比较难的啊,那么这是一些常用的一些软件啊,这个比较有名的就是这个Mimix叫Materialize,是欧洲的一家公司,可以看到这这这三个窗口这个界面有点像3DMark啊。

这三个窗口都是这个影像的不同的视角啊,这是个三维模型啊,那么这个是一个典型的重建出的一个器官,应该是个肺吧,血管呢,不同颜色表达了不同的这个这个血管或者是组织,还有这个在牙科领域这个也比较多。

用用这种三维重建来来来补牙呀,这个镶嵌牙,还有这个是做手术做做些预演啊,这个我三三重建完以后,我先这个通过通过三维打印把它打出来以后,通过一些预演啊,来在手术之前就就来就来这个预演一下这个手术的过程。

以便于手术能够更加顺利,好那么这里面是让比较有个重要的问题,就是说我以为我这个每个切片都有个器官的一个一个一个分割线啊,我们把它抽象成一个横截面,所以这这个是不同的层,不同层的这个横截面呢。

像这个血管可能一个大血管分成两个血管是吧,也可能是一个血管呢,是连续的,另外血管是从从这里开始,所以呢,这里的这个重建的一个非常重要的问题,有些比较难的问题就是这个拓补的变化,我这里是一个横截面。

这里是一个这里出现两个,那么这两个呢,是不是一个分二还是这个分过去,还是这个连过去,还是说都是不不连通的,这个呢,通过算法完全来判断,是不是有的时候是不是不准确的,需要人工一些干预。

因为医生才知道这个地方的这个血管是什么样子,所以在在作为一个算法,你可能还是需要一些策略来处理这些情况,这个正是医学图像处理重建中的一个非常非常难的问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我这里不展开,好,那么这个是医学图像,这个是这个从体里面出发,那么更多的后面的都是从表面出发,就是像重新学这个你们学过101就知道,你给一个模型把它画成一个像像照片一样的,这个真实感的图片的这个叫绘制。

叫渲染,Rendering,那么呢,反过来就是叫Shape from Shading,因为这个就是这个一个加光照以后,这个叫Shading图是吧,就叫明暗图。

那么我们能不能从明暗能够去估计出这个三维物体的顶点的信心呢,当然可以了是吧,因为Rendering我们知道我们加一个光照,光照假设在这对吧,然后呢,这里每每个点啊。

这个这个这个这个这个颜色所对应颜色是什么呢,是是这个这个太阳光照跟这个法线,还有我们四点之间的一些一些关系对吧,所以呢,如果我这个颜色知道了假设光照和四点我也知道了,我们是有可能求出这个点的空间坐标的。

它的基本原理就是这样,就是把这个渲染方程的逆过程把它求出来。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以我们假设当然这个如果考虑全球光照,这个是非常困难的问题,所以我们在这里的话在基本上都不考虑全球光照,只考虑局部光照,最重要局部光照就是这个Foam模型,Foam Shading Equation。

这个Equation大家非常熟啊,这个光照四点啊,还有这个物体表面法相,还有它的双面坐标之间关系,那么这个一般我们会把它假设成是个浪波的模型,这样你就通过它的颜色,假设相机和光照是这个知道了。

你就可以去反求出它的空间坐标以及它的法相,那么这就是它的基本原理啊,具体这个很早年大概90年代就开始有这种,Super Foam Shading这样一些工作。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

从视觉领域他们就开始在做这个事情,图形领域也在做,那么如果你给的这个是一个模型的不同光照,这样子是一个Multiple Image,那么这个信息量更大,那么这样重构出来的这个曲面就更精确是吧。

不仅是重构它的那个它的结合,这个叫三面模型,而且还可以重构它的材质,Arbital就是那个反射率是吧,在Games 101里面讲过的Arbital就是那个反射率,就是那个反射那个系数,好。

那你也可以重构它的Normal,最后就得到一个三面模型,所以你输入是多张,那么更加对这个问题会有帮助。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么如果大家对这个感兴趣的话,可以看一下我们组这个张吉隆老师,最近做的一些工作,这边是发在Parameter上面,这个都是从单张来恢复这个模型,当然在这个工作里面,他用到了人脸的一些新鲜知识。

因为人脸有模板,所以恢复的会比较好一点,这个是对一般物体,这个大家可以兴趣可以看一下,那么对于这种最新文章呢,你们可以看到参考文献,就可以追溯到这种Sharp Form Shading。

一些比较早的文章,从这里出发可以去做一些探索,好,那么这个文章呢,是今年,不应该是去年了,现在已经元旦了,去年CVPR 2020的一篇最佳论文,最佳论文呢,这个文章呢。

就是他就是纯粹是通过这个深入学习方法来做的,就是是一个,你看Optimize就是什么,不需要训练,他就是用一个神经网络来回归这个三面的,这个这个给另一张图像,来你和这个他的三面模型,还有他的AVIDO。

还有他的其他的一些信息,好,我们看看,看看他的一个,因为这篇文章因为他是学习方法,所以你甚至这种卡通啊,这种这种抽象化都可以去回忆出来,好,我们来看看他他的那个是怎么做。

那个我们以前稍微解释过那个神经网络,神经网络他他就你函数对吧,所以呢,我给给定一张这个图片,好,那那么你要去求出这个他的模型在哪,这个模型是是是呃对,这个是确定做啊,好,你可以看从从这个模型。

你可以去回归出他的那个啊,一些这个呃,这个自信度,还有他的深度深度就是这个模型啊,还有他的lighting也可以作为作为变量,还有AVIDO也可以作为变量,所以你用一个回归呃这个一个函数。

一个给给给那个数据以后呢,他可以回归出好多这种中间变量,最后呢,他把它再把它渲染成一张图片,我希望这个渲染图片跟这个图片的尽量相似,所以所以这里有有一个loss,有一个这个回那个叫做呃这个误差函数啊。

就损失函数,所以呢,他整个网络整个网络就是一个回归啊,就就是一个就是就是一个那个拟合啊,拟合的话,使得我得到的三位模型经过我的shading加上AVIDO的,这个一些一些一些这个性质把它绘制出来。

就变成一张跟输入图片一样的这个图片,这样的话呢,我的模型就可靠了对吧啊,所以他是一个这样的不断的在自我的这个呃迭代优化过程,学习过程就是在在优化啊,所以他这个巧妙的把这个呃这个问题啊。

你们的变量变成一个这个神经网络可以去优化的一个过程啊,这个呃就是第一次达到了,就是不需要学习而不需要训练数据就可以从一张图片啊,来来来重建出三位模型啊,这个原理大家清楚啊。

就是一张模型一个图片是得到三位模型,事实上是不为一的,这个解释不为不为一的对吧,所以他那个是有奇异的啊,所以一张图片能得到要么就有很多鲜艳知识知道了哈,要么就是利用一些这个非常特殊的一些技巧好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么更多的是什么,因为一张图片到三位模型事实上是有奇异啊,因为一个顶点对于空间中的一条线有很多顶点可以对待对应,所以呢,更多的方法的是这种基于多多视角图片啊,就是我给一个模型。

我从不同视角给他拍照啊,只得到得到若干张照片,每每个照片呢,是从不同的角度去跟他拍的啊,那么我能不能从这个多张照片去重建出这个出去,得到这个三位模型的点的信心呢,啊,这个是有可能的啊。

这个这个里面的数学基础是非常简单。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们来看一下他这个基础呢,就叫做多视角几何啊,上这里这个有一个重要的观察就是如果我相机从这拍从这拍两个视角是有个四角差对吧,就像我们人眼睛一样的是有个四角差。

我们能眼为什么对空间物体是有这个有一个空间的感知呢,就是因为四角差,这个点跟这个点如果是对应的话,在我两个图像的这个位置啊,跟我这个眼睛四角差了,刚好形成一个三角形。

就可以去重建出上面这个模型的一个上面坐标啊,用示意图来看就是这样一个图哈,这是4。1,这个4。2假设假设这个红点这个大的红点跟大这个大的红点是对应关系,你可以看到这个是同样一个模型的一个点。

在两个相机实际上是出现在不同的位置,是吧,那么通过不同位置以后呢,我们来看这个图啊,好,那么假设这个相机啊,这里有两两两两个两个符号,一个叫RT,RT是表示这个相机的这个方位。

它的旋转加平移就是表达它的位置是吧,图形学里面用一个这个四个数啊,一个矩阵加这个T就表达这个相机位置,RTR是这个相机位置,R23 T3是这个相机位置,假设这三个相机位置都不知道。

所以R1 T1 R2 T2 R3 T3都是位置数,但是我能找到这个点在这个相机下的点的这个像素坐标,以及在这个相机下的坐标,你在线坐的坐标就是这三个坐标是知道的,而这个点是公共点,所以这个点是一个变量。

那么那么这三个是知道的,是吧,这个三个同影就X1 X1 X1 X2 X1 X3知道的,而我们也知道了一个相机是个正轨相机,如果这个相机的这个这个焦距,这个内参我们把它叫K,我这里提一下。

这些R1 T1 R2 T2叫外参,内参就是指这个相机内在的一些参数,比如说它的焦距,假设焦距K我也知道了,所以这个点就是X1 E是空间这个点,在这个相机平面上的成像的距离。

而这个这个坐标就是满足这样一关系,空间这个点在相机1这个参数,相机这个内参在这外参在这,这样一个矩阵乘法就得到了一个K X11,就这个点是吧,而X11同理可以得到这个X1就这个点,在相机2的像素在这。

在相机3像素在这,而这些是椅子的对吧,位置的话就是这些K和R1,所以位置数是K,相机是不变的,那么R1是每个相机的旋转,加T1每个相机的平移,这个叫外参这个叫内参。

所以我如果找得到足够多的这些图片中的对应点,有些点可能在三个相机中都存在,有些点可能在这两个相机存在,有些点可能在别的相机里存在是吧,所以就这里可以得到很多个这样这样的等值,只要你这些点点对。

你可以看到这里可以找到好多点对,足够多是不是他就是这个这个等值,个数就超过了面量个数,这个就是一个这个这个过约数的一个一个系统,然后你去求他的最小二乘以一下的解,就可以去挽求出这些相机的内参和外参。

这就是多色点解荷的一个基本原理,当然这里大家就会问,我怎么知道这些点跟这个点是有对应关系呢,并且图片如果假设有很多,我怎么一个个去找呢是吧,那么这是视觉上面有好多这种特征值。

这叫做descript去描述这个图像中之间,这个哪些点是对应有可能对应的,这个有个非常重要的就叫shift,s i f t这个这个算子就可以去帮助你找到,好那么有了刚才这些理论基础以后呢。

你就是求求解这样一个这个超大规模的一个这个方程组,你就可以求出他的相机的内参外参,以及求出这个这些对应点的这些坐标,那么人们呢就由此呢就产生出了非常多的这种多视角的这种补给系统,像像这个是比较常见的。

就是架几个摄像机中间站一个人也好物体也好,扫一圈就可以就是相机都不动嘛,所以只要抓拍一下就可以采集他的不同视角的照片,这个是一个球这个球上面放了好几百个相机同时采集,就像这个一样,这个是他的内部结构。

可以看到这些地方都是下相机,那么这些是打光的光源,让他尽量这个光源均匀一点,那么这种采集系统的基本上就有滤屏,大家知道这个滤屏抠图比较方便一点,只是为了抠出这个主体部分。

那么这种设备在很多很多这个动谱这个一些工作室都非常常见,中间有好多相机,那么搭这种系统的话,一个非常重要的一个难度是什么呢,就是这些相机这些物理设备的一个同步问题。

因为我要知道这个所有相机在同一时刻抓到的图片要对应,所以如果由于网络也好,还是硬件设备的网好造成延迟,这样的话就往往会造成这个偏差,所以这里面做这种系统,这个这个同步的问题是非常非常重要的问题。

也比较难啊,就这是属于工程问题,好,那么呃,image based modeling,我们简称叫IBM,这个软件现在这个算法,大家我一听完大家也觉得不难是吧,但是你要你要做的好。

就是首先对应关系要做的好,同步关系啊等等啊,所以还是不容易的是吧,但是这个随着技术进步,包括算力啊,包括那个一些特征点匹配的精准度越来越高,现在也出现了一些非常好用的一些这种商业化软件。

像SWIPE他们这个地理性这个领域就就用这种飞机啊,去大面积飞城市啊,可以非常快速的重建城市的这个商业模型啊,这是一个artiso,artiso是那个香港中文应该香港科技大学全龙教授。

他们一个团队做的一个线上的一个商业重建,你可以把照片传到他网云端,他云端帮你算好以后下载下来就是商业模型啊,你可以看到现在的商业模型,这个行业摄影就是从空中航拍这个城市拍好的照片。

但通过算法就可以把它重建出来,你可以看到这些渲染出来的这个这个模型啊,这个跟非常非常逼真啊,已经看不出是照片还是商业模型给渲染出来的啊,还有包括这种发工厂,当然你也可以看到有些质量还是不好。

特别是这种比较细的地方还是抓的不好啊,那么好,那么还有一种第四种叫结构光,也叫白光,工业界叫白光,我们学术界叫叫结构光,叫Structured Light,那么它的原理呢不是通过两相机,它只有一个相机。

但是呢,我这边呢通过一个光源,这光源上就是用一般的投影仪,就是我们教室里用的投影到这个这个前面屏幕上投影仪,这投影仪呢不是光光的打光,那么它是打一些条纹,像在这里出现的这种竖状条纹,有些是横状条纹。

有些甚至是格子条纹,反正你用一定的这个,因为他们两个是同步的是吧,所以打条纹是干嘛的,打条纹就是给什么,给他去打特征点,因为条纹是依靠直线,包括这个横条纹,这个焦点是非常容易找到的是吧。

所以就把上面刚才那个去图像中找那个对应,啊,然后那个就变成什么呢,变成我主动的去打一些条纹找对应,那么这对应关系不就是明确了吗,对应关系明确了以后,同样用刚才那个方法就可以去算出这个点的上面坐标。

也包括这个相机参数,但是一般做的时候呢,我们会把相机参数给它记下来,所以相机参数是这个变量的就没有了,以及还有他们的角度也没有了,好,所以可以看到这个在工业界这种,在工商上面算什么也还是比较多的啊。

像杭州,先林啊,就做的非常非常不错,就是你可以看到有些有些是这种像简易的,就一个一个投影仪加上一个相机是吧,还有有些呢,是这里有三个相机是双目就两个相机加一个投影仪也有啊,这样的话。

使得这个精度会更高一点啊,所以可以看到在工业界中用结构框上面,上面以少的精度是非常高的啊,已经达到商用的这个水平,像这里这里少这种机械零件都是非常不错的啊,好,那么呃呃这里呢。

说到的这个双目不妨不得不提一下这个啊,start from motion啊,就是在视觉或机器人领域的这个一个基本东西,上次就是刚才双目坐视角结合的一个基础,还有SLAM,SLAM是机器人领域啊。

是一个机器人啊,怎么样去实时构建这个场景于他他的地图啊,所以这个虽然是同样东西,但是算是在不同的领域,他叫法不一样啊,你可以看到一个在机器人领域,一个在视觉领域,是他们东西是背后东西是一样的啊。

就是刚才说的那个,那么SLAM这个就是拿拿拿个机器人,机器人拿一个这个RGB图这个这个相机啊,当然对机器人来讲,他还有一个内在的叫IMU啊,IMU就是可以定位的一个一个装置啊,就就多了这个这个事情啊。

那么呢,你这机器人拿着相机在运动,就可以实时扫座位的这个图像,实际上是本质上是视频,那么通过这个对应点关系啊,这个原理是一样的,然后呢,就可以进行上面的重建啊,不仅重建完以后还可以构建出他的地图。

因为这个IMU啊,可以定位出他的那个那个那个世界坐标啊,所以地图就出来了,这个在机器人领域比较啊,这个是一个根本东西啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

像像这里是个视频图啊,这个是个早年的工作,一个机器人,这个是个机器人啊,然后边走就边可以探索,周边的这些场景的上面上面坐标,他不仅探索出来以后,他还把这个新探索的这个场景的,跟老场景进行匹配。

就构成一张地图啊,那么这里里面还有些问题啊,问题就是这个叫叫避缓问题,因为像机器人从这里转一圈过来,有可能呢,这个根据连续性,他能够把这个场景缝合,但是回来以后呢,发现所莫两真不一定缝合。

这个叫loop closure问题啊,那么在前年的SIGGRAPH,我们做了一篇文章,就是怎么样让机器人自动漫游这个场景,是以这个物标,就是物体为引导的这个一个策略啊,我这里提一下。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么还有,哪些测距方式呢,还有一种,前面讲的那个测距方式呢,就叫做被动式,为什么,我都是拍照片,或者是这个通过算法来找照片之间对应关系,他是被动的获得这个上面坐标,那么这个这个方法呢。

这个激光雷达也叫LiDAR,这个叫主动式,这个采集装置,因为他怎么他这个,有个相机,这相机的主动的发一个激光,发激光,然后呢,这激光呢,弹射到物体表面以后,回弹以后呢,回到我的接收器,那么这样的话呢。

就通过这个路径,或者时间,我就能够很快自动算出来这个点的距离,所以他这个叫主动,这个测距,也要主动这种扫描。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,这里有个视频,大家看一下啊,就是,这个视频可以可以可以看出,有一个,有一个激光扫描仪,啊,这个视频播不出来啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就不看了,好,那么这个在这个最近的十年,这边是最近十年左右,这种激光扫描仪成本越来越低,你可以在有的时候在街上啊,看到路上有些车上装了一个这个东西啊,像这个就是激光扫描仪,他激光扫描仪呢。

怎么他是这个上面有一个高速的,上面有一个高速旋转的一个激光头啊,从上到下去扫描这个建筑,一条一条一条,然后每少一个点的,马上就把这个点的坐标给采集到了,这样的话呢就这个汽车在街上走的时候呢。

就可以对周边的建筑还有树木啊,这个道路进行采集啊,所以现在很多做无人驾驶车的一些公司,采用了这种主动式的激光扫描仪。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

来做这个三维场景的感知,好,那么这个是叫做深度相机深度图像,那么深度图像呢,是也就是大概11年开始,微软的connect啊,这个是2011年10月份发布的一个产品,这个产品呢,当时出来还是非常轰动的。

特别是在玩游戏非常火爆,下面这个视频可以看到,就是当时呢,就可以看到一个人在镜头前做运动,你手上身上不用装任何的传感器,那么这个装置呢,就能够自动的识别出你的骨架,你的运动。

所以你就可以在镜头前面去玩这种,运动控制的这样一些游戏,比如排球啊,跑步啊等等,当时轰动一时,因为那时候大家都觉得,要实时来做出三维信息或者骨架,是不可能的是吧,好那么,这背后的原理是什么呢。

背后原理发现,它并不是从RGB来得到这个事情,它还有个D,D就是这个depth,深度,深度什么意思呢,深度就是每个点啊,我还测得什么呢,测得了我的视点,就是相机啊,到物体表面的距离,哦原来它有三维信息。

所以说一下子把这个采集啊,从这个原来的RGB,主动式的也获得了这个D,就这样的话,就使得这个应用,可以变成现实,之后的话,很多很多大厂啊,像苹果呀,英特尔啊,都在这个这个深度相机这方面,做了很多工作。

这个像前几年iPhone11,包括去年刚出的12,就上面集成了这样一些深度相机,就是它是RGB。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

D三个,那么D这个,D这个深度呢,非常规则,那因为它跟图像是一样的啊,就是一个Grid,只不过每个点有一个深度而已,所以它本身上是一个2。5位的一个图像。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你可以看到,它这个可以理解成一个灰色图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

是吧,好,那么这个相机原理,我就稍微提一下啊,那么早年的深度相机呢,叫Time of Flight,叫Torv啊,这个这个相机,它是通过发射时,一个点,然后回来时间,就可以算出它的深度,这个是。

但这种相机呢,它只能采集非常小分明的,就是R56*R56,当时啊,当时这个几年前,现在有可能扩大了啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么那么还有一种是Connect,这个相机,这个相机穿出来的时候呢,它原理非常巧妙,它呢,实际上是从这个,你可以看到这有三个摄像头,一个是RGB,一个是发射红外光斑的,还有一个是接收器。

那么这个这个发射红外光斑的,这个呢,它是发射一个闪斑,一些盘栈,闪斑呢,在不同的距离呢,会呈现不同的pattern,所以呢,你只要识别出,它是属于哪个pattern,它就去那个查找表里面,马上查找。

匹配一下,就知道了这个pattern,所对应的距离,所以你不同的这个距离,如果pattern是不一样的,有天比如距离小,pattern是小一点,距离大pattern大一点,所以它的这个深度啊。

不是要通过刚才说的,那个被动式的采集,要去算的,它不用算,它就通过一个,这个光斑的匹配,算是你把它叫做匹配码也好,然后就可以把它做出来,所以这个connector,包括刚才2IF相机,它非常快。

它一秒钟可以采60帧,30帧,甚至更高帧的一些,针对的动态物体的,这样一些深度,就使得刚才说的那些游戏,运动带有运动游戏。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就成为可能,那个一年出来以后呢,我们比较早的就知道了,所以很快做了一篇,把这个基于connector,拿来做人体扫描,发在2012年的TVCG,这文章引用还是非常高的,就是我们通过前后,两个深度相机。

加这个深度相机来扫描,因为深度相机它是发生红外,所以它有这个干扰现象,所以为了避免干扰,我们这个后面后面加一个,前面加两个。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

做的比较早一点,那么后来这个,过了一年呢,就connector非常出来以后,就成为主流了,因为他用到了GPU,这一些这个计算,是很小妙的,把这个通过那个隐私函数的方法,然后来得到实时的这个重建。

这文章非常有名,大家有兴趣可以看一下,就你拿着connector,像扫描营一样的,对着一个轮体也好,轮体不要动,或者对一个物体也好,进行一个移动,然后就可以扫描出,很多很多方向的帧率,这个帧。

然后通过一个算法,就可以把它那个重建出来,但是这个现在也成为很多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一些上面重建的,一个主流算法之一,还有一些这种,比较特殊的一些重建方法,就是你拍照片以后,假设这个照片,你放在一个滤屏背后,所以说它的轮廓线,就可以抠出来,那么我这个是从视角1看的,这个是从视角2看的。

那么可以看到,从视角1看的话,这个物体一定是存在于,这个视角所导出的,这样一个柱面里面,对吧,你把这个轮廓线,给它这个网空间,因为视点我是知道的嘛,所以往中间去投一个,这样的这个叫swiping。

就是扫略体,好那么从另外一个视点,我也有一个这个横截面,是吧我也投一个扫略体,那么另外一只脚,那么这些扫略体,在空间形成的这样一个交集,就是这个物体本身,是吧所以这个很好理解,这个叫微修后。

叫可视这个图包,那当然你这个,如果视角越多,这个模型就会重建的会越精细,是吧所以它适合于那些,比如轮廓比较清晰的,这样一些物体。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这早年也有这个方法,好那么这个方法就比较老,这个叫探针,探针是这个是在机械行业,可能是我们那个年代还有用,现在不到在某些工厂里面还有用,就是它这个探针的上面有个传感器。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

它传感器连个线,这个线是可以知道这个传感器。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个嘴尖的这个上面坐标,所以呢你接触这个物体表面,然后按一个按钮就踩到这个点,接触一个表面,按一个按钮就踩到这个点,因为它完全是靠机械装置,来定位这个这个这个锥,嘴的尖就叫plop,叫探针的这个坐标。

当然这种方法在机械行业,可能现在还有用,首先它也非常累,因为你要靠锁工一个个点嘛是吧,就是在早年的这种,这种音响工程还是用的比较多的,一个呢就是它也对物体表面,可能会划伤。

所以它不适合这种比较珍贵的物体,比如文物,这个显然不行嘛,所以这个现在用的不多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可能在一些不测图行业可能会有,还有一种三维重建呢,这个也是在被业界,特别是工业界也经常提,这个叫全景相机,特别是在一些虚拟现实的一些公司,就戴个头盔,你可以这个360度看到这个场景,也可以拉伸。

也可以这个放大,那么这些呢原理呢非常简单,事实上它就是,它不是个三维重建,它是个全景图,Panorama,就是用桌上图拍出来,只不过是360度而已,你可以看到,这个这种周圈布了好多好多相机。

每个相机都拍成照片,每个相机都拍成照片,把这个照片给拼起来,就变成一个全景,像这里是上面也有拍,所以这是市面上都可以买得到的,这种全景相机,像这个呢是一前一后,只不过两个呢是一前一后呢,就装的是鱼眼。

鱼眼是个广角相机,所以拍的这个范围比较大,比如说可以拍到180度,那么这个后面拍180度,就这样形成一圈,所以只要拍一次,就可以形成这个点所在的,这个位置的360度的这个图片,然后拼成一张柱面。

或者球面的一个图像,你戴个头盔就可以随便转头,就可以看到那个影像。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

事实上它不是三维模型,它就是图片,那么还有这些怎么牵引像素,就是通过不同相机的这个千套,可以放成很清晰的照片,这个也是最近几年说的,他们有的时候也把这个叫做拟三维,所以刚才很快讲完了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个三维这样一些采集,那我们看怎么来重建呢,就回到这一部分,刚才无论是怎么采集,都是从各个角度去看这个物体,所以这个物体呢都是碎片式的,那么你怎么把不同角度的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个模型把它拼起来,变成一个完整模型,这个就叫做,就叫做这个Registration,叫注册,首先扫描本身就就是个体力活,就是虽然现在有很多拿机器人,来帮你扫描,就是为一个物体。

你怎么去扫不同的这个角度,这个,以至于能够完整的把这个物体,给扫描出来。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个叫这个Planning,这个Planning呢就是有一个问题,叫NBV,Next Best View,就是我扫了这个物体,这个侧面以后,我下个视点再拿扫是比较合算,能够最大化我。

对这个物体的这个这个感知,是吧所以这是一个非常好的一个研究课题,最近几年也有一些文章在做,好我们先不谈那个,好假设我从两个两个视角,V1扫了一片,V2扫了一片,你把它放在一块就叫注册。

注册是个什么问题呢,事实上是这个问题很简单,是个什么问题呢,好假设这个X扫的坐标有了,Y扫的坐标有了,我是不是要求一个变换,使得我这个X变换之后呢,跟Y呢要吻合在一块,是吧那么这个变换到底是什么变换呢。

假设这个物体是不动的,是不是这个变换就是一个什么,就是个钢铁变换,旋转加平移就行了,所以这个变换的变量就是一个R和T,是吧一个旋转一个平移,就可以去求出来,那么具体怎么求它,这是另外一个问题。

好我们来看,那么这个问题呢,上次可以看的是个能量计较问题,就是我怎么样让X和Y这个这个,把它align,把它这个放在一块是最好呢,所以变量就是什么,变量就是这个变换,这变化apply在X上面。

要让跟Y最就吻合,所以这里面如果你要对这个,物体来进行建模的话,你这里就有就有不同的这个建模的方式,一般来说就有两项,一项是叫做match,就是这个就是匹配的这个误差,X和Y公共点一定要匹配出来。

第二个就是,如果你还有一些更好的知识,就叫prior,叫先见知识,在这样的话呢就让这个解更好,好我们大概很快过一下,那么如果是个刚性物体的话,你可以看到这个X变到CX以后,量量和它Y相相等。

你可能中间有一些公共点,你要你要引导我这个T,这个去求解是吧,那么这个求解呢,比较方便比较简单的就是这样,假设我已知知道一些GI跟那个对应关系,是吧,我使得我变换后的这个J,跟这个变换后的这个J。

跟我这个X上的这样,就是这个这个变换后的X,这样子点,要他们的距离平方和最小,我是不是这个就必是是必,就是最吻合的,是吧,好那么这里就一个,非常简单的一个一个formulation了。

我求一个旋转加一个平移,因为假设物体是不动的,这个是叫刚性物体,那么我去求一个最好的R和T,使得他们中间有些对应点呢,要尽量的相近就可以了,那么具体这个对应点怎么找,那是另外一个问题。

比如说你可以跟刚才一样的,用图像的一些局部信息呀,或者点阅的局部信息去找对应关系,因为因为X1对J1,X2对J2,那么我希望这个这个对应关系的点,要保持距离要平方和最小,就可以求出来。

当然如果一些物体是叫elastic,叫那个弹性的,如果发生少量的变形,那么这时候呢,这个这个变形的这个尺度呢,我容许他的这个相对边长不变,这是个简单一个弹性的一个这个度量。

当然你说还有一些是这个分段刚性的,就中间就就这里就多了个Sigma,就是这一段跟这段相近,这段跟这段相近,就是分段刚性嘛,所以你可以自然而然就把这个能量改一下就行了,所以说不同的对象。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么你这个能量可以进行,跟你的问题进行不同的更改,那么最有名的一个方法就叫ICP,ICP呢就是一个迭代方法,就像那个索叶8里面的这个RED算法,它怎么呢,就是我有个对应关系,我就可以求出个t这个变换。

求完变换以后,我又可以找对应点关系,然后又去再去优化这个t,所以不断去迭代,就像这个求文外图的那个,就是CVT的那个RED算法,我求完一个以后,我求中心,中心以后我再求文外图,这个原理是一样的。

ICP非常简单,这90年代就就已经有了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

到现在有非常多的变种,所以这里呢又还有一些这个怎么样快速是有效啊,以及这些全怎么去取啊,还有没有一些这个避免错误的对应点,对我这个优化的干扰等等,还有好多问题啊,我这里不展开。

这个loop closure刚才我提到过啊,就是你转一圈以后这个这个接不上了啊,就是你这里这么多针,我这个MR跟M1相相吻合,M3跟MR,到最后MN跟M1呢,中间就可能出现一个巨大的裂缝。

因为这个是误差是它会传导的,它到不是传导,它会积累的,就是到这里以后呢,它就误差可能就会比较大,这时候要通过一个全局优化啊,我这里就不展开啊,那么下面这个图呢,表示你在做的时候呢。

也可以用一些图像的信息来做对应关系。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

会更精准一点,这个显然吗啊,好,那么下面一个就是叫consolidation。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

是在这一步,consolidation是干嘛呢,你这个点虽然这个集成在一块了,这个点呢,但是还是有很多问题啊,比如说这个点呢有噪声,还有这个outlier,outlier是什么,表示有理点。

就是它偏移这个曲面比较多了,这个是有可能是对应点关系找错了,或者是重建计算的时候,误差,以及这个设备本身出问题啊,还有好多这种missing parts,就是这个空洞。

因为你这个物体总会有物体这个在背后啊,就是扫描扫描不到就出现这这这种空洞啊,像这种空洞是吧,还有这个采样率啊,这个不均匀,有些地方密,有些地方稀,有些地方啊,这个这个甚至没有就是missing啊。

所以你这个数据呢是不完美的,不完美的话,你到后面去做重建的时候呢,就会带来很多问题,所以呢,一般的这个流程会在重建之前呢,会对数据进行一个前处理,这个前处理过程就叫consolidation。

就是对数据进行一些优化啊,这个好,那么这个consolidation意思就是,哎,我得到一个稍微质量好一点的这个点云,那么这个点云再去做后面重建呢,重建算法就能够work,如果这个点实在是很烂。

你这个后面怎么样的算法都不work啊,所以怎么样去在前面就做一些前处理啊,就是能够保证这个点的质量尽量高,好,那我们看一下有哪些啊,我们不详细讲啊,这个因为基础课,我们不深入展开所有的技术,好。

你比如说可以看到啊,这个这个去噪啊,去除outlier,还有还有什么重建项啊,我们我们来看一下啊,那么事实上挑战挺大的,就是有些时候呢,这个地方的点呢,他不是不是一个流行,他这个有个厚度啊。

叫sync cloud,你怎么样去掉一些多余点啊,因为你想,如果你不是流行,你这重建过程中,你是很多点一坨在在这里面,就他就不是个流行结构,他这个重建后面的算法,怎么做都做不好啊,还有什么。

还有采样这边西啊,这边密啊,不均匀,还有什么,还有特别是对于这种比较靠近的这个点啊,这个往往突破关系很容易产生错误啊,能不能在这里面进行一些预判啊,还有这种尖锐特征啊。

像这个这个sharp future啊等等。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这个怎么去去除outlier,有不有有很还是有不少文章去去做啊,这是我们13年一篇文章的一个截图,就是一个室外的一个啊,来打数据啊,你可以看到啊,上面有好多这种妈妈三三的一些些细点啊。

通过这个outlier就把它去除掉了,然后再再通过去照就可以把它这些脏的点把它去掉啊,这个你可以看到这个图就这点,这个图就可以看到啊,这个妈妈点点点就少了很多啊,后面做重建呢,就不会有太多干扰啊。

做这个outlier去除的文章还不少,大家有兴趣都可以看一下啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么还有normal consistency,这个什么意思啊,就是你想一个曲面或者叫我们拿二维来说,如果你这这这是一个物体表面,你这那么应该是这个少朝外,这个应该是朝朝外的才对的吧,如果你是算出来。

不小心算出来某某个点,这个那么是朝朝内的,是不一致的,那么你最后面的这个重建,我们前面讲过影视曲面方法,normal很重要,normal怎么定义了内外,如果你内外这里是一矛盾的话。

你重建重新重新肯定是有问题,是吧,所以这个normal你怎么能保证啊,这个这个都是一一致朝向一致,并且这个是做做都朝朝朝下啊,这个就是可以通过预先处理,把这个normal给他变成一致化啊。

有利于后面做重建,那么这个normal这个一致化的话,一个比较简单的方法就是,哎,我假设有个地方的normal我非常自信,所以我就通过他的传播,一步步传传过去是吧,如果夹角小于90度。

表示normal是还是一致的,啊,难就难在这个这个非常尖锐的特征上面,好吧,这里有也有不少文章在做这个事情啊,就怎么样让normal啊保证一致定向啊,否则的话他就不可定向的话,就是非流行就重建出来的。

这个结果就会可能会就会很烂啊,好,那么还这个下面就是resampling,叫叫这个重重新采样,就是有些地方吸有些地方密,那么怎么样让这个点啊,在曲面上进行一些移动,那然后然后让这个点的分布尽量好啊。

后面重建的时候我们还会提,就是如果你是sample不均匀的时候呢,很多重新算法就失效啊,就是怎么样去去进行一些这个点的一些重新分布啊,那分布呢又不能偏移这个曲面,所以这里面也是一个啊,比较要破的问题啊。

那么,这边一篇sigma h09年文章,大家可以去看一下,从从这一文章就可以看到console,进行的一些进展好吧,不仅他们引用的,而且是最近几年引用他们的都会找得到,好,那么这些这也是一篇这个13年。

talk文章就是怎么样,这文章思想也挺有意思,就是他为了保持这个edge edge边界,就是这个特征点,他呢是在非特征的地方呢,这个这个法项的这个采样或者法项传播,那么到,这个特征的地方呢。

再进行特殊处理,因为因为这些地方这个传播也好,还是采样也好啊,这个是比较稳定的,不会出问题,出问题就在这些这个尖锐特征上面,所以他是分两步,第一步对光滑的地方进行一些重采样,以及法项的重定向。

然后在这里面的话再进行一个策略,这策略呢是两边,如果特征的两边同时都往这个地方去采样,好,这就是3D的一个示意图,刚才是2D,这是3D可以看到这个你可以看到就第一步,他对非脚点的地方可以采样。

所以中间是一些缝,就是这个地方没处理,在后面再慢慢再往中间处理,就会形成保证一个非常尖锐的特征,所以他这个叫edge aware。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是变敏感的,还有一些数据,由于质量关系产生一些空洞,怎么样把它补齐,补齐以后的话,这个后面重建就会好,是吧,这个后面我还会提一下,那补齐也不同方法,是吧,你可以看到这个这个补齐方法比较简单。

这个补齐方法呢是相对好一点,你看到这个补齐太光滑了,是吧,一看就知道可能就是用简单的拉布拉斯,smoothing进行那个这个这个这个填充,是吧,那么这个呢就就利用了周边的一些关系,周边的一些信息。

可以把这个游戏把它填填进来,有点像文理文理合成的这个思想,好,好,第四部分就是这个,那么如果点这个就注册好了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

也做了一些预处理,把这个一些脏的点把它删掉了,那么下面就要把它重建出网格出来,是吧,所以网格出来我把它变成一个,把先把这个问题讲明白,问题就是好,我已知一些点,这是一些3D点,好,我怎么样变成一张曲面。

好,这些面可以是连续的用那么说表达,也可以是离散的,我就是三项网格,可以吧,反正你只要是一个流行给给我,那么就这个重建的任务就完成了,所以input就是这些点,这点指示地点。

稀稀拉拉分布在这个阿维流行上面,你要去重建出这个曲面,是吧,实际上是继续学习,学习上就是对高位点来做这事情而已,你这个重建的好,你中间一个空档地方预测就会准,是吧,预测就是在做这个,学习后的一个判定。

好,那我们看,但重建这个问题上是做了很多年,还是没有做得很完美,因为它有好多性质需要我们保持,比如说脱不性,还有这种这个这个有效性啊,还是正确性啊,等等,你可以看到这个图。

这个图呢就在重建中经常会出现问题,就这些点假设不告诉你是怎么连,你有可能这样连,左边的连成一个物体,也可能什么连成两部分,对道理,是吧,但这个是本来就有歧义,如果你没有更多信息给到我们的话。

我们这两个是两个呢,是没法区分的,是吧,所以这就导致了很多时候呢,我们连着一些这个脱不关系就会出错,啊,这个呢,也是以前我们提到过的CD软件,为什么这么难,就是这里面在求交啊,包括这些采样的时候呢。

就脱不关系,你当时维护错了,就导致后面灾难性的一切错误,那么那么这个重建里面也是同样有这种问题,好,那么重建这个呢,我把它分成了两大类方法,那么一大类叫逼近法,另外一大类叫离散法。

我分别把这个事项讲一讲,具体展开可能今天来不及,PPT东西很多很多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么我们先讲这个approximation,就是逼近法,逼近法嘛,最简单就是我以前就讲过了,就是我中间给了一些点,我怎么样构造一些,先把这个曲面进行分片,每一片呢就是个逼量条,我会叫北辙曲面,是吧。

那北辙跟北辙之间有一些光方法性,对吧,来脚点处像这个脚点处有12345片,那么这五片也要要C2连续,这里三片,那么那么这些地方呢就相对来说连续性比较好控制,是吧,就用这个边。

北辙曲面的控制点点也可以表达,所以呢,你用北辙,这种函数去逼近这个点就行了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

是吧,当然你说这个那么是比较比较点比较多,你也可以用天条来去表达,天条就就点点数比较少一点,这就是我们上半这个内容的一些课,就是用连续函数去逼近点云。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是拟核嘛,好,那么呢,更多的是这个一些方法的是用隐含数来逼近,你还是逼近呢,我们在这个第九个PPT里面,就是我们以前讲过的啊,就是我们构造一个隐含数,这个隐含数是什么,是一个高位隐含数。

那么在二位中是构造三位,那么我们在三位空间点云的是构造四位一个隐含数,使得这个函数的0整值面就是这些点所经过的,这个能够经过这些点,就是这个is value是0,就是0整值面,最后呢,把代码的出去出来。

好,那么我们这个思想就一下就听懂了,对吧,好,我们来看一下,那么,一般来说就是这个这个对一个点,我如果求的法项,我我法项外求一个点,法项内求点,假设这个这个点值是1,这个点是负1,这个点是0。

是不是一个点就产生了三个点,就在空间中就有三个点的函数值了,1 0负1是吧,所以一般n个点的话就能产生三个点,就就三个点这样一个在空间中就这样一个值。

这样我只要叉值出一个三位空间这个点的一个一个一个函数,上去就有四位函数,这时候呢,我当着0整值面抽出来,就是这个形状本身,是吧,好,那么这里呢,就是画了画了个图,有可能呢,你如果碰到这种情况。

你如果你这个点定义成这个式外面,就可能产生错误,对吧,就可能产生这样一些问题,还有些什么法项错了,也会产生问题,所以基于影视方法的这些方法,这些这个这些方法,基于影视函数的方法,法项是非常非常重要。

你怎么样产生这些点也很重要,是吧,好,那么一般的话,我们就不用这个1负1,是用什么,是用它的距离,所以这个叫做距离场,那么在外面是叫正,里面叫负,所以叫符号距离场,所以你们大量的看到SDF。

就是就是指这个东西,好,那么这这次可视化,就是绿色点是这个原始输入点,那么红色点是外面的这个这个这个偏移的,那么蓝色的是里面的,就是这个三层点放在一块,稍微看得有点不是特别清楚。

但你可以看到他们是三层的点,好,有了点以后,你就就是什么,这个以前那个课上我们也讲过,是吧,就有一个这样的距离场,那么距离场的时候,你就可以重建出一个函数,那么重建函数呢,大家就以前都清楚。

那么你要去拟合一个函,这个空间的函数,你可能要选一个函数形式嘛,就RBF这个继函数,这个我以前我们讲过的,同学们做过了,然后你这个继函数可以采用高斯,也可以采用不同的这种继函数。

这个继函数RBF继函数呢,不一定一定要高斯,只要是像这个帽子一样的,这个这个,往下凹就行了,甚至可以还凹两次都没问题,因为它都是一个线性无关继函数,可以张成很大的空间,你就可以去拟合,所以你这个n很大。

就继函数放哪,n很大,它的表达能力就会很强,具体怎么放,放在哪,这是另外一个问题,那么这样的话呢,你设了若干个继函数,在某XI中设了继函数,你就构成一个函数空间,你就可以去拟合那些点云,最后。

让那些我们的点,带到这里来变成0,因为等于0嘛,就是这个0整值面,曲面外面的点带进来等于1,里面的点带进来等于1,就构成一个非常大型的方程组,就把它平整化以后,就变成这个样子,就这样一个样子。

就是这些带定的系数,就是那个全,这些就是那些值,那么这个矩阵呢,是一个非系数的,是一个绸密的,但是它是对称并且正定,所以一定是有解的,只不过这个规模很大,是n乘,这个n就是你,所放的基函数的那些个数。

有时候呢,我们也会在后面,加一个光化能量,使这个基函数呢,相当之什么,让它有更多的条件,更光化一点,甚至可以加一些多样式,像在后面,这些RBF基函数的一些性质,最后都是在解一个方程组了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后,然后这里呢,这个是我解释一下,这就是基函数用了多少,这个呢,是可能用的基函数不够多,所以你可以看到,拟合就不好,因为基函数少了嘛,它的拟合能力就小,所以你可以看到,它抽出0等值面就比较差。

这里是选择好的基函数,那么一个比较简单的,选择基函数的方法就是,我随机在这些点里面,选n个点,选n个点作为基函数机的原点,去构造基函数,也可以,像这个基函数选的少,就表达能力弱,基函数选的多。

就表达能力强,是吧,但是如果基函数再多呢,有可能就过拟合了,是吧,这个跟神经网络的,这个一样的道理,所以神经网络,就是基函数的个数嘛。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好,那么这个算法呢,这复杂度还是挺高的,有nOn平方,就是,那还有这些,那么西瓜2001年这篇文章,大家去看一下,他就是用RBF去做这个重建,就刚才讲的方法,他呢就是有些技巧就让存储,大量减少了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

不用存On平方的,只要存On,那么,前面刚才讲过,如果你normal错的话,这个重建就非常差,像这里都是出现了一些,normal错的地方,你可以看到,重建出来的效果非常非常差,这里多了个球。

这里多了一个骨包,是吧,像这里就错了,对吧,这个才是正确结果,所以,所以这种隐含数的方法重建,对这个normal,对这个法项是,是非常非常敏感的,也非常重要。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以法项必须求对,你这个这种方法才能够做得很好,那么这个是2003年一篇siggraph,叫NPU,这个呢,就是一个基本思想,就是,他根据这个,这个距离场,来自使用的来进行破分,离这个越近,这个点。

就是,产量点就会越多一点,然后,然后能保证这个重建的精度会越高,具体的思想就这样,我就不展开,时间已经比较晚了,好,那么这是NPU,大家如果有兴趣,可以看一下这个文章,好,那么,另外一个比较重要的文章。

我要介绍一下,是06年的一篇文章,这个叫破送重建,破送重建呢,事实上他也是在fitting一个indicator,就是叫一个指示函数,里面是1,里面是0,外面,里面是,里面是1,外面是0。

但是他又把这个t2,给他,给他,也去逼近他,像这个t2,就是只有边界的t2是fitting,里面因为全是1嘛,就是t2都是0,外面t2也是0,所以他不仅逼近了这个函数,而且还逼近了这个t2本身,是吧。

所以我们以前接触过,这个这个,实际上是通过一个变分,很容易知道,你你如果一个t2也进行一个差值的话,变分一次的话,就变成一个这个普通方程,普通方程是什么,普通方程是一个两阶变方程。

所以你只要在这个定义上去求解这个方程,就可以了,就把这个重建问题,变成了一个普通方程,去求解这个隐含数的问题,好,那么任何一个隐含数方法,我刚才讲的RBF也好,MPU也好,他求出来都是隐含数。

跟用第一种这个NURBS不一样,NURBS是直接是个显含数,就逼近嘛,那么那么234呢,都是隐含数,那么隐含数就必须要什么,你要把这个上面的点给找到,就要用marking cube方法去找,是吧。

然后我们以前讲过marking cube,我就不展开,那么二维中,以前讲过的思路对吧,这个这个,这个great,这个一正一负,有一定有零点,这个这个两个正就没有,是吧,那么对空间中的话就情况多一点嘛。

因为是他有一个体数有八个点,那么这八个点正负正负的关系,就不同的关系,我把这全部列举出来,总共有15种关系,你就可以去抽,抽出这个这个网格出来,当然这里有好多问题啊,这个这个marking cube。

这篇文章是很很很经典的,这个应该是,87年是挂过的啊,之后有好多好多改进,并且网上有好多代码啊,你们大家不用自己去重新写,网上有很多代码可以参考,好那我们再再讲一讲,那个离散方法,discrete方法。

你这方法的思路呢,怎么他不需求函数,你像像这个是求一个显示函数,啊这这这三个都是在求隐隐函数,是吧,这个不管有函数的话,你求他以后,你还得把他离散在三项网格,你才能渲染,对吧,但是函数呢,表达有个好处。

他比较光滑,好,还有一种方法呢,就是什么,我不去求函数,我直接根据这个点去去点,好,比如说我采样点就就就这些,我把它连起来,构成对平面来讲连这个线,这个这个折线就就就是曲线了嘛,是吧,对空间来讲。

我把这些点跟点连连成啊,这个面三角片就构成了网格了,是吧,就是他去把这个点给这个直接连起来,构成这个曲面,好,我们先先讲上面之前,先把二维讲这个做个示范,比如说这里啊,有一些点,我具体这些点怎么连啊。

是这样连吗,还是有别的连法呢,就你可以看到,你我呃,有好多种不同连法是吧,那么哪个连连这个线的方法,比如我随便连一条,我这样连这样连过来过来过来过来过来,是不是一个连法,但是显然这个连法。

我没有很好的性质是吧,这个不好的性质,那么我们来再问怎么样度量,这个连接方法连接的这个关系是好的,我们要有个度量,这个好的度量有了,我们就可以来正确一步步去去去连这个连线,然后来重建这些曲线,好。

那么这里一个比较重要的一个一个策略呢,是跟我们做三角画一样的,就是用这个Denali,或者叫文外图来进行判断啊,这个这个有好的性质,我稍微提一下,那么文外图呢,以前讲的时候呢,有些课讲过是吧。

我这里再补充一个知识,就是这个中轴,一个形状的中轴是什么呢,就是这个黑色是形状,红的是他的中轴,中轴是什么,中轴是那些,如果是二维的话,那些与他有两个密切,切线圆的圆形的集合,像这个点啊。

就离他的两两两个边是有两个最近的点啊,这两点是只有两两个,所有这些点的集合就叫中轴,我们举例啊,比如说一个矩形中轴,大家想看啊,那么从从这做法,他是应该是他的平分平分线,对吧,从从这里的平分线。

那么那么那么中间一条连线,所以中轴是是是这样,12345中间这个啊,所以这些再问一下,圆的圆的中轴呢,圆中轴就中就差的圆形就就一个点啊,好,这是比较简单的几个形状的中轴,那么对于一般形状中轴呢。

是是这样,好,那么中轴要求的话,实际上是一个比较复杂的数学操作,那么历史上呢,大家发现,我可以用VD文乐图的啊,这个这个这个来逼近这个中轴啊,所以如果你对这个中轴不需要太高精度。

我可以用VD文乐图来做这个近视,那么这里要讲的话,理论还是有一点,我这里稍微展开一点,就是说这个这个这个有一个采样率的问题,就是你要有个性质啊,就是你要这个地理成立的话,要什么要这个信号要足够的密。

就是采样率要达到一定条件,怎么什么条件呢,有个比较简单条件,就叫叫这个叫R sample,怎么意思呢,就这一点呢,我画一个半径VR的圆,那么中间呢,就一定会有这个采样上的点在里面,满足这个性质呢。

就叫一个好的柔的采样,什么意思呢,就说明这里不能空太多,你空太多的话,这个性质就传不过去,你这个计算中轴也好,这个连连线的好,就会产生误差,为什么他会连到别的地方去啊,所以你这些这些理论方法的话。

要假设这个采样足够密,这是一个非常重要的一个要求,如果因为不利用不是很密的话,他就会就就为什么连错啊,好那么这个是这个想法,这个算法我就简单讲一讲啊,就是好,这个是给定的点云啊,假设是P。

我把这个点云P呢,做一个文外图,是不是就有中轴上的那些点点点出来了,是吧,我把这些点啊,跟这些红点加到中轴上的点,加文的中轴上点,一起作为一个点,再做一遍文的图,那么那些出现在。

出现在那个这个这个就是外接源,只有两个点的地方呢,那个那个点呢,就成为这个重建的那些边,这个算法非常简单啊,这道三维也一样,只不过三维稍微要复杂一点啊,所以他算法很简单,首先算这个输入点的这个文的图。

然后呢,把这个这个这个文的图的这个顶点,跟S呢并起来,变成一个新兴的点击,再去做顶道的三眼副分,然后呢,位于那些顶道的三眼副分的边,就是这个曲线本身,就是你看到就这些黑的,这个线就连起来了。

那么这个是有理论保证的啊,理论保证是,但是理论保证什么,要满足刚才那个S sample,所以呢这里面有一个,很重要的要求,就是你的产量要尽量的密,你如果不密的话,这个理论就失效了啊。

就是重建出来就未必是你这个理论上的这个曲面啊,好就就这个啊,如果太大就会失效啊,这是最显然,因为你看这里面像像这里有个极端点,像这个地方就就没有采用点,他就连不过去了,是吧,你即使知道他是封闭的。

你也不知道他怎么连,那么3D的这个class算法呢,就是2D刚才一个推广啊,我这里就不展开啊,这个一展开时间还是有点多,我就留给大家去学习,反正这篇文章是发表c c官1998年啊。

就是就根据刚才那个二位的这个一个推广,只不过他三位中有点特殊,他他要有个最远的极点跟最近几点两个概念啊,我这里不展开。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

大家看文章,如果你要用的话,大家再再再来再来看啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是当年98年的时候重建的一些一些这个这个这个算法啊,好,嗯,但是算法比较慢啊,因为因为他要不断的去去求能文来图吧,一个顶端参与部分,好,那么这个刚才那个叫class算法,那么后面有好多改进。

是什么什么空算法呀,扣空啊,还有这个power cluster,就这个这个这个就是class上的一个改进啊,当年早年20年前有很多这种文章啊,并且每一文章里面都有一些理论上的保证,但是但是保证的是吗。

最要有条件就是sample一定要足够密啊,但是我们想想那个平时正在应用中哪哪有这么好的分布,这么密的这个产量点给你啊,是吧,所以这些文章呢,理论上很漂亮,但是实用上还是会存在的很大的问题,好。

那么这是这太空空太空空是空空的一个一个改进啊,也是比较早年的一个方法,好,我这边就不展开,好,那么我这里再介绍几几种啊,这个最新的一些方法,这个是这是我们14年CY微学一篇文章,基于这点学习一个方法。

这个方法呢,就是跟两个方法都不一样啊,你可以看到我既不是拟合一个曲面,也不是拿原来的点去去做上下网格,我是什么,我是在就是这些蓝色点是输入的点啊,我是重新采了一些点,然后用这些点。

这些红点构成的上下网格去逼近这些点,你看我我这些我构造出来网格的点啊,不是原来的点点之一啊,只是是重新采的采了一些点,但是我能保证这个网格能逼近你更好啊,那么这个想法比较强调的地方在于什么呢。

就是我怎么找这些红点,这红点是未知数是吧,还有红点之间的连接关系也是未知的,但是我有个度量怎么呢,我希望所有蓝点到这些这个红点,所构成的这些绿三角形上面距离平方和要最小,对吧好。

那么这个距离是什么怎么距离呢,距离是上去一个点到三角形距离就是它到垂直距离,对吧,而这个垂直呢又是三个零点的一个先进组合,就中应坐标嘛,是吧,如果我把红点看成是个位置量,是不是表示这个红红点位置量。

那么这个组合只有三项是非0,是吧,所以这一个大矩阵啊,所以哎,这个这红点是一个未知数,然后每一行的组合系数只有三个是非0,有可能是两个,也可能是一个,如果在边上的话就是一个两个,那在0点就一个,好。

这样的话就把它变成一个什么,变成一个这样的问题,好,我对一个蓝点,啊,它是三有三个红点,以及这个三个新组合,那么这个矩阵是很大的一个矩阵,但是它只有每一列只有三个是非0,所以它是一个非常稀疏的矩阵。

就是它的那个临摹,小一点三,我们以前提到过临摹,临摹就是稀疏性,那么这样的话就把这个问题变成什么呢,这个点其实知道的,这个红点我是未知的,这个同一矩阵呢也是未知的,但是呢,我可以把它看成是个置点学习。

也就是说这里的点是这个置点的一个性组合,那么这里有两个变量一个位和b,那么如果两个变量要一起求解的话呢,很难是吧,我们用这个交替法去求解,就是所以把这样一个问题变成一个。

稀疏优化中的一个非常典型的置点学习问题,通过一个全局优化,因为我们的度量是一个全局无差,就是我们比如说你给定n等于1000,我怎么去找1000个点分布,使得这1000个红点构成的网格。

能够很好的毕竟我原来给定的这个点击,就变成一个这样一个非常,很巧妙的变成一个这样优化问题,就可以进行优化,优化模型就是一个交替迭代法,就是不断的去固定这个一个矩阵求另外一个矩阵。

然后固定另外一个矩阵再求另外一个这个这个这个矩阵,那么当时做的时候效果还是非常不错的,这个你可以看到这里不断迭代,这个上限越来越精细,而且这个方法与这个采样点噪声都不是很不是很敏感。

都能重建出比较好的一些结果,而且它对特征也能抓得很好,因为它是全局优化那些点的分布,所以这个点的分布在那些特征上面是最合算的,如果部分我们当时证明了,如果部分在那些特征点上。

它那个误差就会就会一下子变得很大,这是根据常见的一些这种方法来做比较,你看到这个一些细节就抓的还是不错的,好我这里不去展开,那么这个方法呢这个跟影视函数方法,还有跟显示方法都不一样。

因为它也不是拿原来的点来连,但是它也不是拿这个影函数去去去拟合,它更像这种方法,因为虽然我我不是拿原来点点连,我是重新采的点的连,它还是属于一种显示或者叫半显示方法,还有一些方法。

我这里讲一种比较比较比较比较典型的,这个是06年一篇Eurographics,这个想法的想法比较有意思,你说假设这个点云是一个封闭网格的点,我呢我里面放一个气球,我气球呢不断吹气。

这个气球是不是就会膨胀,膨胀的这个膨胀充满到边界时候呢,它不会膨胀出去吗,因为点把它挡牢了是吧,所以呢你这个膨胀不了的时候,就变成了这个曲面本身是吧,那么具体怎么膨胀呢,就是里面有一个影视距离场。

距离场大的地方就膨胀快,这个叫做deformable model,叫可变形物体,这个气球呢不断在变形,变形呢都是朝法向进行变形,这里有个动画我们看一下,那么这个是一个点云。

那么里面这个地方放了一个小气球,然后不断地把它吹吹它,在吹的过程中这个气球不断膨胀,注意哦这个气球在不同点它也可以合并,也可以不断地膨胀,也可以不断地合并,最后这个吹吹不动以后。

里面这个吹不动以后就变成这个模型本身,所以它这个就是一个演化模型,这是2006年Ulographics那篇文章,还没语义式,那么今年就是去年我一个本科生,就把这个方法推广了一下。

就是我们发现光靠里面一个球去膨胀,有的时候空洞很大的时候呢,它会出来是吧,所以我们改造了一下,我们不仅是里面一个球,我外面也包一个球,我里面的球呢不断膨胀,外面的球呢不断收缩。

想象一下外面有个球我不断去抽它的真空,它这个球往里演化,外面这个球呢不断吹气往外膨胀,当这两个球无限靠近,谁也动不了的时候,这个曲面就被我给找到了,就是这个内球和外球的两个缝隙,误差足够小的时候。

它们中间这个夹缝的这个中间曲面,就是我要的这个重建曲面,这个是刚才看到过的,这个你可以看到,它这个蓝色是里面的球,绿色是外面的球,这些红红点是这个给进点云,所以两个不断在,你演化一次我演化一次。

演化过程中始终保证,它们这个不能相互穿透,也不能被数据点给它穿透,再看一遍,这个红红的点是数据点,蓝色不能穿透红的,绿色点也不能穿透红的,对吧,里面的球在吹气,外面的球在抽气,就是在不断收缩。

那么当它们达到一定这个状态的时候呢,就这个曲面就出来了,那么这个方法呢,对这个大的空洞,这个效果会比这个单个球。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

里面那个球的方法要好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好最后时间很快,然后最后讲第五部分,这个Post Process,就是曲面重建出来以后呢,可能还有一些问题。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就可以做一些后处理,后处理,那么后处理有好多了,这个修复啊,去照啊,这个光光光顺啊,简化啊,那么这三个已经讲过了,是吧,那么修复什么意思呢,就是有些你重建完以后,发现还有一些空洞,我能不能把它修补一下。

今天稍微提一下这个,Repairing,Repairing也有可能,在有些文章里叫Completion,就是把它补全,Hole Filling,这个补洞,也叫Restoration,不同文章用不同的词。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

都是在这个对数据进行一些,完整性的修复,那么Denoising,Smoothing,Simplification,都已经讲过了,我们就不讲了,我们就今天稍微提一下,这个Repairing。

Repairing产生原因,可能就是什么,有些地方没没有扫到嘛,是吧,比如说我扫棉仪从这看,这个地方没扫到,就形成了一些空洞,是吧,由遮挡关系所造成的,比较多一点,那么你要去修复的话呢,在图像领域。

有个课题叫Impending,就是修复这个图像中的,缺少部分,比如像照片,我写了一些文字,这个文字被,这个照片被破坏了,我怎么样把它恢复到,原来的这个照片,像这些文字所站的这个区域,就是空洞。

这些空洞怎么修复掉,这个叫Impending,Impending在图像领域,实际上是也做了很多年,这个像一些油画的修复,这些折横丢掉的像素,怎么找回来是吧,那么你要去做这个问题,从数学上来讲。

就是个差值问题,你怎么样从周边的这个信息,差值出中间的信息,你差值是,你回一个什么函数呢,你是不是还可以,你回它的梯度呢,是吧,用Poson当然也可以,所以你可以从不同角度。

去formulate这样一个问题,所以你这里本质上,就是个差值问题,你是用一阶函数,就是一阶差值,还是用PD差值,这个去援引自己的建模,好,那么我们这个,本来图像这个imending,也有很多方法。

我们就不展开,我们就介绍几种比较典型的,网格的这个,这个补充方法,像这个方法比较简单,将就是找到找到这个歌风以后呢,找到编辑以后呢,就直接什么,做一个顶脑里三项三项化,然后再给他。

再给他refinement加密一下,就把它补充了,中间他好像也用用到一些,法项或者曲率的一些信息,我就不去展开,那么这个这个呢,这个是Cyber04年G-Tow的一篇文章,他这个是是中间能保证一些。

这种突破关系,我也不去展开,大家有兴趣可以看一下,那么这篇文章是,就是前面有张图,就是你看可以看到,如果这这这这是个空洞,这个空洞,如果你是简单的,这个这个叉子用方法函数,就这块就显得比较光滑。

就没有周边这样一些文理,加一些细节,如果这个做的比较好的话,你可以是利用的这个上下文,就周边的一些这个细节,可以把它传进来,那么他主要是用的方法,什么呢,就是把周边的一些,几个细节。

也把它学这个学习过来了,用叉子叫content aware,这篇文章是在C504年,这篇文章有点像文理,文理这个修复中的这个文理合成,就是通过旁边的一些信息,把这信息往里拷贝,这个这个这个过程。

好具体不去展开,这是修复了一个骨头,可以看到这个这个,如果简单修复,就是做的光溜溜的是吧,然后修复完以后,就可以保持一些特征的传播,以及这个细节,好,那个留给同学们,这个也是当时。

05年一篇example based,就是他的修复的思想呢,就是如果一个地方修复了,他能去数据库里面去找,跟他相似的,因为他别的地方是一致的,他可以去数据库里找一个相似的,那利用这个相似的这个地方的。

这个这个数据啊,来填充来修复这个缺失部分的数据,所以他叫example based,基于这个数据的,基于例案例的,有点跟现在学习有点相似的这个思想,只不过他是通过这个这个三维形状的匹配去去做。

具体三维形状怎么匹配啊,这个是我们放在下面两两节课会来讲,好,这里我也不展开啊,这些都是online匹配的工作,后面时间比较比较紧张,我就跳下去,啊,这篇文章是05年。

是利用了那个内部的一些信息来做做补动啊,这个就有点像尹寒说的,他把里面的信息拿来做,就可以对补动做的比较这个鲁邦一点,啊,这篇文章就是用纹理合成。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

他把就是把把这个网格看作是参照化啊,然后呢参照化完以后呢,你就,网格就参照化完以后呢,就中间有一些空洞,那么他在图像空间中用纹理合成,把他这个像素给他用这些颜色给他填那个填填过去,填过去以后。

这个填完以后的话,把它回过来就就就形成了三位的这个空洞的一个填充啊,所以就把它转成一个二维的一个填充问题,就是把三位的imprinting变成二维的imprinting来做。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有一些timeline based等等,这个这篇文章12年有一篇对这个match repelling,做做了一个perspective,就有点像中数的,大家如果有兴趣可以看一看啊,那么最近几年呢。

我也提一下,最近几年呢,做incompletion的文章也很多啊,包括CVPR,他们用很多学习方法啊,这个呃来做这个空洞的填充啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

文章不少,我这里就也没提,好,最后还有一部分,我很快讲完哈,这个今天稍微延延个时间。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

动态物体就是刚才扫描的物体都是静态的,物体是不动的,我们在摄影师生活中呢,还有人体呀,是要经常动的,动态物体的采集就有更更困难一点,为什么你物体是在动的,时时刻刻在动,所以你对这个采集的设备要求很高。

你要一秒钟采很多帧,如果你采的量,就是比如说一秒钟采采一帧,我运动很快,你就不可能重建出动态物体,是吧,所以动态物体采集呢,很多是用这种深度相机,深度相机采集本身就一秒钟可以30到60帧,甚至更高。

还有这种高速相机,一秒钟可以拍很多帧幅,就是他不断的去拍,所以你可以看到,一秒钟30帧的这个数据量的话呢,就采集数据量非常大,而且采集比较困难,这个数据结构也很复杂,还有硬件要求高。

硬件不仅是采要采得很快,而且要各个视角要同步,就是要硬件同步,所以做到这个系统是有点工作量的,采集过程实际上是大致是一样的,只不过多了一个时间维度的注册,因为物体从一个状态变成另外一个状态,它是变形的。

所以你怎么样把当前的物体的网格,把它注册到下一次课的网格上面,然后你多了这样一个注册问题,所以它多了一个时间域的注册,刚才那个注册只有空间域,所以这里是一个时空两个维度的注册,所以只要把这个问题搞明白。

动态物理的这个做就没问题,所以问题大概是一样的,只不过是多了一个时间维度的注册,因为物体是在动的,那么从十几年前吧,也又是十多年了,动态物理重建也做了一系列工作,包括南加州的李浩。

包括Mark Polly。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

国内清华的刘业斌等等,就做了不少工作,有做离线的,离线什么意思呢,我先把数据采过来,然后再来慢慢做注册呀,一些重建的工作。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这方面的工作稍微偏多一点,那么离线有个好处,就是你慢慢算,有些算法可以比较复杂,因为时间你不关注嘛,你反正慢慢算,算的时间长一点,最后出来的东西是一个连续变化的视频,一个物体就行了,本人这里有个视频。

我就不播了,那么从十年前开始呢,大家又在关注我能不能实时,因为离线算算很慢,达不到一些这种游戏呀,这种要交互的应用,那么我们能不能去做动态的,实时的,这个挑战就更大,为什么你这个计算量一下子就多了。

你不仅是那个要算出一帧的曲面,而且你要一秒钟算三次整,对吧,所以你计算的这个时间只有30毫秒,因为1000毫秒除以三次也就33毫秒,你只有33毫秒来算,某一帧的这个网格,当然每一帧它不是独立算。

它有相关性,所以我算完前一帧,我这一帧稍微做点变形,就能fit在后一帧,所以这里的大量技巧是用这个技巧,你不能把它看成一个独立计算的过程,所以这种方法就前几帧,可能是要时间稍微长一点。

后面就会变得越来越快,那么还有一个难处就在于这个拓补变化的过程中,你那个跟踪啊就叫chasing,就是我前一帧的网格,能不能跟到完整跟踪到后面那些帧数,如果这个拓补变化很大,或者运动很快。

往往失败率也很高,就是这10年来做的文章也不少。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

大家可以去看一看,那么还有前两年,包括这两年还有实际学习,反正学习反正就是个拟合嘛,反正也可以拿来做做些拟合,但我个人感觉这个还有好多做的不够好,这个学习方法不一定靠谱,虽然有文章。

这个大家也可以去看一看,作为一个参考,因为还是要根据这个被扫描物体的一些先进知识,还是要要要更多的信息拿来,光靠拟合拟合,你要比如你要采一个人,你要对这个人做训练,你要做采集很久。

训练好你对他重建才会好,好这个时间也也差不多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那个我们做一个总结,物体扫描本事上你看,比如说这个大卫有十多米高,那个这个大卫的这个项目是十多年前完成的,就是意大利这个美加朗基罗这个大卫,你可以看到它有21个点,有22个大小型,有32G。

十多年前32G还是挺挺挺大的,22个人花了将近一个月,三四个晚上来来做扫描,所以这个工资量还是很大,现在呢最近几年,也有人考虑,能不能拿机器人来扫描,拿个机器人,反正就那那那机器人。

能自动规划我的扫描路径,自动来检测哪些地方没有扫清楚,我再去扫,就是用机器人来替代人来做这个任务,当然是非常好了,好这个大家如果看到这些。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一些要求的话,就会想到一些新的问题出来,当然重建,今天虽然讲了好多文章,这个你可以看到流程也挺长,从从前处理,这个注册呀,包括consolidation,到后面的重建,到后处理,你不同的采集方法。

有不同的这个这个这个数据类型,或数据特点,但总体上来讲,现在这个重建还是个非常难的问题,你无论发了多少文章,这文章像有些文章理论很有保护,但是他要求采样足够精,足够这个密,但实际过程中采样采集的数据。

往往就是稀稀拉拉的,甚至有些缺失,你那些所有的美好的算法都不work,都work的非常烂,我们做过非常多的这个苦头,这个算法这个要求太高,是吧,就是他的条件太苛刻了。

因为你要你要我我采样率要达到一定程度,就跟这个就跟三种原理一样的嘛,是吧,这个你采样密度足够高的时候,这个采样频率高于我信号本身的频率的两倍,我肯定能够理论上保证,我恢复的信号是原来信号嘛,对吧。

但实际问题中往往不是啊,就是这是一个点,就是采样的那个条件不够,第二个呢,就是那些空的case很多,就是一些特殊的一些这个这个情况,我们做算法的人都知道,就是往往一般的case很好做。

但是在一些特殊情况啊,这个地方呢,可能这个点飘掉了,可能这个点反向那个这个求的是有歧义啊,就会让这个地方重建的非常非常不好啊,这个到现在为止就是都没有一个非常好的方法。

软件能够帮助帮助人们能够自动创建这个商业创新啊,那么同性学整个领域啊,我就会谈谈我的想法,就是看法就是同学三大块建模啊,仿真加渲染啊,仿真嘛,就是本质上都在求解各种各样的PDE平方层是吧。

有固体的这个牛顿动力学方程,如果是那个固态的变形,就是有限元,然后液态的话,就是这个MS方程,Navi Stux方程,是吧,就是有拉格朗的观点,有柔拉观点,就是就在求解方程,这方程是固定的。

只不过一些条件不一样,所以他的这个这个这个计算机制是明确的,那么对渲染来讲,给张模型加光照加材质加4点啊,整个信息,你就是求解那个渲染方程就行了,是吧,然后简单一点就是local shading啊。

form模型等等啊,来一点就是pass tracing,就是光路追踪,反正你总是算力的问题是吧,所以现在呢,那个那个仿真也好,渲染也好,也可以仿得非常逼真,渲染也非常逼真啊。

就是就看大家实现的技巧怎么样,是吧,很多引擎像U14虚幻这个技巧用了很多是吧,U3D一样,还有还有新的引擎,大家都在PK这个工程能力,以及挖掘硬件,比如说你你用很好利用到硬件。

或者很好利用到一些云资源来加速我的计算,但是他们的这个计算是明确的,为什么解方程都是解一个PDE,再一个解光路方程啊,就是渲染方程,但是建模这一块第三大任务,始终这里面是一个非常瓶颈问题。

因为三维啊做了多么多年,中心学做了多么多年,发展了很多技术,到现在大家也看到更多的应用,但是还是普通老百姓或者一般的人,包括我们专业做这个这个专业的老师和同学,也很难很容易获得一些模型,拿照相机去拍。

拿扫描,拿那个Kinect去扫,还是很难啊,那么那么那么扫了扫去,这个能出来一个模型,但是质量不高啊,这里丢一点,那那里会有些噪声,那里有一些啊,一方面这个这个设备的这个质量或者精度。

也达不到现在的高精度建模的要求,即使那个深度相机数据质量是还是很差的,其次呢这个扫描过程,由于遮挡啊,由于这个设备的误差呀,或者人手都躲动了,质量没法保证,所以导致现在有些那个应用啊,就是缺乏三维模型。

就没法去爆发一些更多应用,我也我也希望在下面的五年啊,甚至更短吧,那么如果技术发展有限也长一点,能在三维建模这一块面,如果有公司或者有个人,或者有有研究机构,能在这一块,能够大量的让人们去产生这个内容。

三维内容,那么这个领域就一定会爆发啊,那么是是是什么机构,或者是什么设备,我也不知道啊,就是就是主要是内容,就不像图像处理领域,我拿拿个相机随便拍,就能生成大量的图片,就能生成像这个ImageNet。

这样的一个千万级,甚至商业级的这个数据库,就会做很多事情,是吧,三维模型还是很难的问题,我也希望这个各位同学,如果有有这个志向。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以在这方面去去尝试一下,好,好,那么今天布置作业时,也是这节课,这门课的最后一次作业,啊,这作业那个,这作业呢,我希望大家体验体验一下啊,随便重建了一些简单算法,算法难度倒不难啊。

你可以从这三个算法里面去选一个,一个class算法,class算法的话,里面要有个one line,包括Dynamic参与部分的这个这个这个调用是吧,这个你们在前面已经学会了,会调那些库了,是吧。

所以你只要去判断那些条件就行了,怎么保留那些三眼变片,啊,还有一个就是RBF,就两个引子方法选一个,这三个选一个做就行了,好,如果你有时间练练手,做两个三个都可以,RBF以前你们也做过。

这个所以也不是太难,只不过把它变成三维而已,婆婆送是一个新的算法,是求减PDE,这个稍微难一点,如果大家时间比较有限,建议是从前面两个选一个,那么后面两个的是引子方法。

你要用MarketCube去去抽抽曲面,建议大家也用现成的啊,就不需要再找轮子,因为MarketCube算法相对来说比较比较比较成熟,如果大家以后发现他的不足,想去改进再去看他代码去改进,好。

这个给两周时间啊,那么这个课可能也就剩下两到三周,我看情况,如果后面两次赶得快的话,我们就两次总共15次结束,就17号晚上结束,如果内容我还想给大家分享更多,但中间还有很多了,后面还有什么呢。

后面还有形状分析,就是怎么来分析上面的那些形状,比如说导盾演算机啊,怎么怎么去匹配啊,还有检索啊,就属于高级高层的那个结构处理啊,还有一些这个,一些制造中的一些结合问题,比如三感应中的结合问题。

还有一些相关的一些应用,机器人中的结合问题,还有VR中的结合问题,还有一些这个AR中的结合问题等等,如果来得及我就稍微提一下,好吧,给大家一些这种启发或者一些指正,以后你们如果有兴趣。

可以往不同的行业去挖掘,或者去解决一些结合问题,好吧,好那么这次作业呢,这是这次课的最后一次作业,如果跟上队伍的这个同学,如果有兴趣,还是把这作业做一下,还是会对你有很多的锻炼,这不是普通的重建。

网上有很多代码,上这几个算法都有代码,你们也可以边参考代码,边来实现一下,也是OK的,至少你有个感官,未来在做你工作过程中,可能就很快就能上手,好吧,好那么我们还有两到三次,那么这些课,这课呢。

后面的内容呢,就不布置作业了,因为后面的内容就比较复杂一点,就是更多的是一些扩充你们知识面,以及了解一些领域的一些结合问题,为主,好吧,好那么今天的课就到这里为止,各位同学好再见。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

拜拜,你可不可以帮我把这个帽子脱掉啊?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我这脱不掉的帽子就不重要了!

GAMES102:几何建模与处理 - P14:几何建模 - GAMES-Webinar - BV1NA411E7Yr

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好那个各位同学晚上好啊,现在我们今天的课开始了啊,今天是我们的第14次,那个进入到几何建模的内容。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

呃,我们回顾一下上一节课啊,这个呃全面介绍一下全面重建啊,从这个采集设备到后面的点云获取,以及啊点云的一些前处理,到后面的重建啊,还有后处理啊等等,所以呃一个模型的重建啊,扫描重建。

现在这个这个仍然是一个比较复杂的一个问题哦,现在市面上虽然有很多算法软件,但是呢还要这个嗯要重建一个高质量的,特别是室内这种物体啊,这个质量的这个软件还是比较难,没有。

现在重庆的一些算法软件呢主要是以深度相机啊这个为主,然后有个别的结构光扫描这种人体呀啊,这个用多组这样这个摄像机来做,也是有不同的系统好,那么那么这个重建我们讲完了,现在我们讲那个设计呃。

因为重建的话呢,它的物理是要是存在的对吧,所以我们通过采集逆向工程就可以去得到它的模型,但是呢人人们常常也会去涉及一些不存在的问题,就是新的物体啊,那么这里有两种方式啊,一种是呃凭空的去设计。

一种是通过已知的物体去去进行一些修改和设那个编辑好,那我们我们就从两方面来讲这个设计啊,就是这个建模的这样一个过程啊,第一个呢就是从从零开始设计,实际上是早年的cad模型啊。

这个就是呃软件就是从零让这个设计者啊呃提供一些工具,让设计者呢啊去创造设计出他们这这个一个形状啊,这里主要有这么几大块嘛,上次这个y friend modern,等一下我去提一下,上就是啊。

特别是机械学院叫工程制图,就是就是从这个三维模型的三个视角的投影图来设计模型啊,那么第二部分的surface modering呢就是我们以前讲的啊,就是这些这ges是2102克的,上半部分就是鼻腔调啊。

啊nobs这套东西来构建这种光滑曲面,那么在这个cd领域里,还有一个叫sd model,叫啊这实体建模,那么实体建模的话这个内容也是比较多的啊,以前我们也是专门一门课。

那么今天呢我可能就是只花半个多小时把这个内容大概介绍一下啊,能让同学们在脑袋中有印象啊,这个形成一个指针以后,如果碰到啊相关的问题呢啊再去进行一些这个探索好。

那么现在第一种叫y friend modern上wifm就是工程制图中的三视图啊,顶视图,前视图还有测试图啊,那么这是一个右上左右上角,这个呢是一个真正的三维模型,是一个是一个透视图啊,透视图。

然后呢呃一,那么那么能不能就要去根据这个to他的弓箭的零件的,三个视角去画出来啊,但是画的过程中也要做一些精确计算,因为比如说在这条边的长度跟这条边的长度是相等的,因为它都是同一个一个零件的一条边的。

都不在不同方向的投影,所以做这个一些这个透透视投影,或者叫这个三视图的时候呢,也是需要空间想象能力以及一些计算,你才能画的好,那么根据这三个视图啊,就可以基本上大部分模型就可以唯一决定一个三维形状啊。

这个工程制图像,这个土建工啊,土木啊,机械这些行业啊,都要学这门课啊,从一些这种比较规整的球啊,椭球啊,环啊,这个可以novs表达,以及这个free form自由的那个novs啊,那个尾就不站提啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好那么嗯计算部分说的是modern。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我今天稍微提讲一下啊,说的modern是早年这个特别是呃那个现在的一些cd系统里面,非常常见的一种建模手段,好我这里左边有一张图叫institution,就是sweeping,叫叫啊叫挤出也好。

还是这个扫略,他呢就是人们设计一个平面的这样二倍截图,再设计一个或者是垂直于它的那个一条一条方向,当然也可以不垂直啊,那么呢这个二维的截面图形呢就沿着这个直线呢就是扫略啊,什么就是平移平移。

是不是这个二维截截面形状就会在空间中经过一个实体,那么这个实体的边界就是这个物体本身啊,当然从数据上很容易证明啊,就是它是两个平行的面,然后加上这个呃一一圈的这个边就构成一个实体啊。

这个表达也非常容易啊,这个呢右边这张图呢叫叫旋转曲面,就是来一个二维的横截面的一个呃,这个多边形沿着某一条轴啊旋转360度啊,那就是说经过的这样一个空间就形成了这样一个曲面啊,旋旋转曲面啊。

那么这种旋转曲面很适合照这种有对称性的,像杯子啊,碗啊那种啊,圆圆形圆形截面的这样一个物体啊,所以这些呃这些是基本操作,在这个商业软件里面搜walks啊,像卡t啊,哪些公司输出出品的。

还以及autodesk的一些软件里面都有这种基本的操作啊,所以你可以啊去设计一个界面啊,不管是这种界面还是还是这种界面,通过拉伸就是平移啊,以及旋转就可以构成一个实体。

那么这个在呃所有的model里面也叫做参数化建模,因为你这里的一些形状可以定一些参数,你参数修改的时候呢,这个横截面就修改了啊,那么这个体也跟着修改啊,就是参考建模,参建模呢这里有几个概念。

应该叫叫这个轮廓线,叫sketch,也叫啊嗯这个线条还有个dimensional,这个是维度,就是这个图和这个图就是二维的,但是我经过一个操作以后,就变成一个三维的实体啊。

这个这个就叫dimension,就是升维就变成二维到三维了,后面还有一些future,然后后面再解释好,我们来看一下,像这里有一个示例图啊,这个是一个啊二二维的这个这个这个这个横截面。

那么通过一条直线去拉伸,就形成一个实体,如果通过一个旋转这个旋转,但是它没有160度,只有180度啊,就变成一个这样形状啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个非常容易理解好呃,实际上是这个sweeping,这个叫扫略,还可以有更广义的一些操作,比如说这个图里面啊,它是一个横截面,绕着一条非直线,它可能是一个pass,就pass可能是曲线。

那么进行进行一个扫略啊,在扫描过程中呢,可能这个横截面始终垂直于这个截面的这个切线啊,这时候就扫得出这样一个物体啊,所以可以看到呃,你可以定义不同的横截面以及这个曲线,就可以定义复杂的这个物体。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你还可以定义更复杂的什么呢,我可以编少的时候呢,这个横截面可以边变化啊,比如说它这边是一个方形,这边是个圆,那么我中间就可以擦拭出中间一个形状,那么从一个圆变成一个方形啊。

中间扫绿体呢就可以更复杂一点啊,那么这个就生成这种过渡形渐变形的这样一些这个啊实体啊,这个叫robin robin呢啊,中文对应那个词叫放样啊,实际上这也是一种放样,这个算是有什么由体来差值。

一个横截面差着二维向三维是实体来差值。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

二维二维的横截面好,经过刚才解释,可以看到这些操作啊,如果你们去去那个呃,这个几个程序啊,怎么样一个二维截面生成一个三维体,这个数据结构怎么存储啊,这个也是不是特别复杂好。

那么还有呢在参观建模里面还有好多这种对这个零件不同,这次这个几何量的一些约束啊,这个叫做设计意图啊,这constrain sconstrain好,我这里有两两种颜色。

这个边界可以看到边界上面有些尺寸对吧,这个是四呃,四这单位当然是你可以试试0米或米啊,这个取决这个零件是是什么啊,我就单位不是就不说2。5好,那么这个这个这个长度呢是2。125好,那么这里两条颜色呢。

我标成蓝色啊,那么黑色黑色的这个这个边呢我是不做约束的,但蓝色呢我是需要它保持这样一些参数,比如说这个长途必须22。25,这个长度是21。25啊,还有右边这个图呢,我这个长度必须保持是1。75。

还有这个角度呢我必须保持是30度,那么你做任何的一些修改,我我必须这些蓝色的参数你不能给给我变化,因为我有特殊的要求啊,好那我们来看一下啊,好我们举个例子就看第一行啊,这里是啊,这个这这条边变长了对吧。

变长了以后根据这个要求26。25,这个这个只是不能改的,所以呢你也就这条边和核桃这条边可以修改啊,那么那么这条边是这个是不动的是吧,所以你你这个这个变异位往上拎了嘛,所以这个2。22。

5不能不能不能不能修改,所以这条边就必须保持不动好,同样你可以看到其他的一些例子啊,那如果你有些约束是不能动的话,那么这个就可以通过一个求解这个约最优约束,然后呢我变化了一条边以后呢。

其他的边和点是怎么变化是可以求出来的啊,当然在这里面有一个比较复杂的问题,就是有些约束甚至是矛盾的,甚至有些约束是这个相互是呃相关的,这时候就解可能是无穷多个,这时候会招造成这个超新系统呢会产生歧义啊。

这种现象也会有啊,所以一个非常呃复杂的这个模型,它里面这个约束求解是一个非常非常困难的问题啊,因为游戏约束可能相互重铸,也可能是这个不够是吧,对于产生多解啊,这是这个sol modern早年的情况。

在这里面处理了非常多的问题,是这些问题好,那么还有一些操作呢,我这里以这个呃这个商业软件的一个一个菜单来来说明哈,就是说呃这这这两个词就叫倒角啊,就是因为因为有些地方这个角我希望这个不是直角啊。

需要需要圆滑一点啊,那么这个是相当于往往外倒角,这个是往里倒角啊,这只是两个词,那么这倒角呢就是诶怎么样啊,就是就是一下一下子想成一个正方形是吧,然后我这里这个边呢把把把它倒一下,就不要那么尖锐啊。

使得一些零件呢就不能不用伤人啊等等这样一些目的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有share,share就是一个挤挤出或挤压,它不是轮廓挤,它是在在里面定一个里面的这个轮廓,然后往里挤,这样可以把这个物体穿透啊,甚至造造一个这个规格,如果你想想这个横截面再往里挤。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

挤中以后,就这个一个洞就出来了啊,规格就出来了好那么还有一些pattern pattern。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我这里举几个例子哈,那个像这个pattern啊,就可以可以做很多重复的这样这样一些特征啊,比如说我选择一和二,然后再往往往外走啊,这是往里还是往外往外挤啊,然后呢再选这个方向,这时候呢就就可以呃。

就是挤出这个多个洞,因为这里这里是3x3这样一这样一个pattern好好,那其他同样也可以啊,这个旋转啊,你看的是一个矩阵型的3x3,我现在是绕着一个点啊,这个拷贝多多少个啊。

从前上从这个针按照这样一个规则的几何,这个pattern就可以重复这样这样一些特征好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么刚才sorry,modern是这个刚才那操作,这操作呢一个比较重要的问题就是怎么去存储存储呢,这个在这个说的modern这里面叫做be rap啊。

rap叫什么叫boundary representation啊,就是边界表达,那变表达里面最重要的就是表达就是从这些点线面的关系啊,我像我们以前处理这个离散网格的时候,用半边结构也是一种啊。

那么这里在cd里面的话,它这里存在的信息量更多,它不仅要存这些点线面,而且还要存他们的这些几何关系啊,甚至垂直啊,平行刚才说的那些约束啊,所以产出的还是比较复杂的,那么无论你怎么存。

它这个实体总是啊这个这个边界总是一个实体的边界,所以它要满足这个欧拉公式啊,那么在呃在早年这个建模系统里面就产生了好多这种操作,怎么有一些点产生一条边,一个边产生一个面,一个面还产生不同的规格。

就就就有很多很多操作啊,我们在读研究生的时候是有一门课专门来讲这个sorry modern啊,这个一些操作啊,我下面就举几个例子吧,因为现在啊基本上这个全国啊这个呃计算机图形学类的这个课程。

好像我都还没看到过,这个还有专门开这种课的,可能机械学,还有啊这个啊计算机啊,数学类的这种课程没有了啊,也挺可惜,就是呃大家不了解这个传统c a d是怎么来做这种操作的啊,那么这个操作叫欧拉操作啊。

欧拉操作欧拉欧拉操作呢你可以看到一个点分裂变成一条边,所以这个叫m e v啊,m1 v再在这里m v m v是啊,爱奇嗯,生成一下右下边make edge啊,还有点好,就生成一下一一个边,生成一个新点。

好就点加一边加一哎,就这样一个操作呢就记录下来,就可以产生出这样这样一个新的一个一个一条边,现在这两两个面保持这样就会编出来了啊,这里从同样啊这里把一个四边形变成两个三角形,就生成了一个面啊。

那么这里呢就生成一个首先剩下的边,然后最后再把再把这个边给q掉,k把他干掉啊,q掉,这时候就剩下一个环啊等等,通过这样一些非常low level的一些操作,就可以创作出不同的视频啊,那么这是一个过程啊。

这个呃如果同学们以后有机会去接触这个所有所有的model的一些软件啊,可能就有机会体验一下这些操作啊,它是怎么一步步来的啊,这是首先是一个点,然后再生成一个三条边是吧,一个眼。

然后就在这个面面的话又得到一些新的面和点,然后生成体就生成一个规格,好啊,这个因为现在啊要做,如果需要做这个实体造型软件的话,这些还是要深入了解一下好,那么在实际造型里面还有另外一个概念叫c s g。

这个大家可能有些同学也看看到过哈,这个c s g呢就是也是一种通过一些这个叫做基本体啊,比如说方形啊,求啊这个追逐啊,那么这些是这个基本体呢也是一些参数所定义的。

比如啊一个一个球可以由一个点加半径就可以定义好是吧,所以它里面也有参数,然后然后这些基本体呢通过一些不操作叫buring operation啊,就不操作,就三个一个两个实体之间的,并还有啊这个病啊。

这个是交啊,这个是差差,又有和这个a减b啊,这个这个然后呢然后呢通过这些实体的不断的操作,就可以构成一些复杂形体,所以所以一个c s g数的模型啊,c s c g模型它是由一个数所表达的数字根节点啊。

就是夜写点啊,一定是这些proto,当然还再放些参数啊,这参数是是否是存在这个节点上面的,然后然后这个这个上面的节点呢就存这些操作是胶啊,还是病啊,还是差啊,像在这里就存存存了个差,它减它就就等于他。

那么这样的话呢,就是一个一个空间的一个子集啊,复封闭的,当然要是通过一些运算以后才能找到它,它的boundary representation就grab啊,因为cs 7它主要是表达是什么。

是一个实际上是本质上是个隐函数的内部啊,你可以看到,因为这里的内任何一个形体,它的内部都是比如说求是呃那个方程的小于等于一的一个集合嘛是吧,所以他们通过呃交并差就得到一个定义了一个啊。

这个空间啊就是半半空间啊,因为大于零是一半,小于零是另外,比如说大于零是外面,小于零是里面,那么这次有很多隐函数所定义的一个空间,这空间的边界就是可以表达成be rap好。

那么这是一个典型的一个c s g这个model的建模过程,你看这个model啊,这个这个这个模型看起来比刚才上一页要要复杂一点点,你可以看到它的数已经比较大了啊。

所以你要啊会会用这个cg来做一个这个机械模型,还是啊需要很多挑战的啊,空间想象能力,而且对这些操作编辑啊,这个要非常熟啊,所以这个过程也是比较繁琐的啊,还是要经过很多训练。

特别是要对几何还有空间想象能力要非常熟啊,否则的话你这个如果你想象一个明显是这个样子,你不知道它怎么去分解啊,这个也是有问题的啊,就是做不出来,当然给定一个模型,比如说这个模型它的cs技术是为人吗啊。

就未必为一啊,因为呃这里你是先求交还是先求差,有些时候是可以交换的啊,所以这个数字不为的啊,那么那么什么素质比较好的,那不同不同的设计者呢,它有不同的这样的经验啊。

可以去去做不同的这样一个c s g的过程,这个burap呢是表达边界,他们之间你看中这个结构内部,他们之间是可以相互转转换啊,啊我这里就不展开好吧,这个因为也能接触到这些啊。

建模手段的同学可能以后还是比较少啊,那么你可以看到这是一个应该是iphone苹果公司的一个呃,网上的一个这个是设计图啊,当然真正的设计图它是不可能公开啊。

因为任何产品的外星人设计这个文件都是这个机密文件啊,他可能给你一个概念图啊,这个他同学们不知道有没有听过是吧,就为就为了这样一个倒角导多少度啊,这个就是一个专利啊。

当年三星和苹果就为了这个这个倒角的专利把这个互相告对吧啊,那我们不说啊,就说这里面那些参数啊,这个这个设计模型啊是非常珍贵的啊,因为这就是它代表这个公司这个对这个产品外形的一些这个技术啊。

可以看到这个这里这里一些参数,那么这是一些在这个设计软件里面的一个渲染图,好就可以看到在我生产之前就能看到它的表表观,它的生产参数。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

到最后制造的时候,加工的精度是多少啊,等等都能看到啊,这些我就看一下,就是我们日常生活中的小到一个螺丝,大到我们中的家电啊,这个外形设计都要用到这些啊技术。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有这种复杂的发动机,还有更大的到我们的这个整个汽车,你可以看到一个是一个整车中间有几万个零件啊,这个这个里面的每个零件都要有它的cad模型,所以设计一个汽车上实际上非常工程量非常大的一个事情是吧。

更不用说这个天上飞的飞机啊,火箭啊,以及这个航母等等,所以他这些主要依赖于这些c d软件,这软件呢能不能给设计者很好的一些这个设计的路途径,以及保证他们这些这些这些配件之间能够啊相或者那个吻合啊。

也是非常困难的事情,所以一个cd系统的一个挑战,这个虽然这个cd也有很多这种成熟的这个软件啊,那么但是呢是你要做一个很好的cd系统还是非常困难的啊。

其中几个困难点吧啊我以为我们也正在这个网络方向在努力啊,就光圈点一个是求交啊,还有还有一个是这个维持这个产品的一个top啊,大家知道,因为刚才有好多几何形状,他们之间要相互的这个求教啊,求病啊。

所以啊因为你们一个基本的一个非常重要的问题就是求交线,那么这个交线听起来不就是一个解方程嘛对吧,就是两个有两个方程函数解方程吗,但是这里的精度问题非常重要,因为一旦你的精度如果出错。

它的这个整个的拓扑关系就会出错,比如说两条曲面,两个曲面本来是有交交线的,结果你你由于精度问题算没算出交线,这时候就有就那就可能导致后面的很多操作都都是会会出问题的啊。

然后那个另外还有一个就是很很多参数设计的时候呢,它嗯那些约束非常非常非常复杂啊,导致这个优化的时候呢,就会产生很多非线性的一些些些这种优化问题啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好那么谈到这里,我就简单介绍一下这个呃,只介绍一下这些呃,这个这个cad建模算是在制造业,无论刚才说的这个航母啊,火火箭,大家也很清楚是吧,我们通过廉价的劳动力来学会了大量制造技术。

但是高端的这种机床啊,我们公中国还是一穷二白啊,还是没有放没放起来,所以现在啊除了这个这个加工高精度加工这个设备,另外这个工业设计软件也是非常重要,因为你没有这种软件。

你就没法去做出这么多的这种啊这个产品啊,特别是我们国家所国际国之重器,像c9192 航母啊等等设计,都是非常非常珍贵的啊,所以也希望呃在听着各位同学啊,也或者是各位工业建设的同人。

能够在这一块大家一切努力啊,往前走啊,当然要做好一个工业软件,达到西方的这样一些进展啊,这个或者是水平这个时间不能一蹴而就需要很多年啊,短则5年,长则10年。

因为国产软件也是经历过时三四十年的这个积累慢慢形成的,但是我们往前赶应该还来得及好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以大家来继续努力好,那么前面讲的是工业软件从一些设计啊,这个从nba到smodern。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么后面这部分呢我们叫editing,那是什么,就是从一个给定形状,我通过一些操作进行一些改变这个形状来来进行设计啊,那么后面的部分呢就更加啊就面向这种这个动画啊,这种啊这个行业啊。

或者是我们平时这个生活中的建模啊,这个定位是不一样的好那么这个editing啊这个词叫编辑。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

什么意思呢,就是我有个形状,我通过去改变其中一些点线面的关系,还有通过一些这个拉伸挤出,当然刚才那个讲说的model的时候,也也也也有这个编辑操作对吧,然后通过这个修改它的一些错误关系啊。

顶点位置啊来生成一个新的形体啊,就最后在中国,也就是说细分曲面就可以把它生成一个这样的一个啊新的形状啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个过程叫做那么editing的一个最重要一个比较重要的东西是什么呢,就是这个啊中间要有交互叫intective啊,就是比如说我这个鼻子要拉长,要要要要要鼓起来,还是变变成变成这样尖的。

就是用户需要参与到整个设计或者叫编辑过程中,所以它首先是一个active交互的啊,其实呢它是要进行不断的迭代啊,但是这个你怎么让用户能够很好的编辑出他要的形状呢,就这个编辑工具一定要直观啊。

所以要要要直观也要,当然这个结果要非常快地呈现出来,如果错的话,我可以回退等等好,那么后面就什么还有什么保持这个形状的一些特特征,比如说一些呃这个尖锐特征啊,或者是一些这个光滑度啊等等啊。

这是你用户要表达的意图好,所以这个ui就是叫user interface,就是一个编辑,这个是一个非常重要的一个手段啊,这个叫用户的一个交互的一些手段啊,那么要要直观,要非常好用啊。

那么你想如果我要改变一个形状,我要编辑什么呢啊那么这个编辑呢有很难多这个这个手段,那么这个编辑对象呢叫handle,叫叫句柄,有点像我们编程的,对不对一样啊,the handle呢有可能是一些顶点。

也可以看到这些特征,或者一些呃,i i i i i叫region of interest,叫感兴趣区域啊,有可能是一个区域,好,那么我们用户比如以这个图来看。

我又会想让让这个彼此和点的拖到这个红点的地方啊,那么你希望是什么呢,你希望变形效果是这个样子呢,还还是这个样子对吧,不同用户有不同的这个这个这个需求,但是如果你提供这样一些啊不同的种类的变形。

这个这个效果给它,用户就知道怎么去编辑能达到这个要求,比如说诶我希望这个点这个这个可以不不动,比如这个点需要需要固定好,那么那么这种可能性就大一点吧,如果这里没有约束。

那么这个可能性这个可能比较大一点啊,所以他自己的挑战呢就是编辑要什么操作简单啊,也不能太多啊,并且因为像这个点如果有这里有1万个景点,每个点都要这样拖动,就非常复杂对吧,第二个要保持它的特征。

像像这个例子,下面这个例子保证了什么,保证了这个鼻子这样一个条形特征是吧,还有什么保持一些语义,语义特征等等好,那么方法论战呢,我统一讲一下编辑,这里面实际上是呃如果你去直接编辑给定的形状。

这个形状可能顶点非常非常多啊,编辑起来就非常复杂好,那么在后面的一些这个大部分的这个方法里面,都是采用这样这样一个这个这个方法好,我去什么找一个能够近似代表s的一个代理啊,这个叫g啊,p啊。

p是一个比较简单或者叫叫那个更加呃这个呃容易操作的一个对象,那么p来用用p来进行一个s,那么这个这个近视不一定是形状完全近视啊,是某种意义上近视,然后呢只要p定义好了,s就就能够定义啊。

就是这里有个隐私g啊,p给定了s就出来了是吧,好你可以把近年也看到是把s嵌入到一个这个嵌入空间好,这时候呢我们人呢就要去只要去改p变成p一撇啊,这个这个具体怎么改呢,这是具体的方法不同问题。

最后呢我怎么去修改s呢,s呢就通过刚才这个这个影射把修改后的批评夺回来,得到s一撇,那么这样为什么为什么要绕一下呢,因为这个pin呢往往是很简单,就是一条线,可能就是一个非常简单的四边形啊。

或者是一个立方体,所以编辑这个简单的这个代理啊,所以我这里用同一个名词叫代理啊,不同的地方叫的是不一样啊,我喜欢把它叫做代理,或者叫做把它叫做embedded ship啊。

就是这个这个嵌入嵌嵌入空间嵌入形状,所以这是一个非常重要的一个问题,就是怎么去找到这个这个g啊,就是我找到一个好的代理,这个代理呢能够体现s的性质,这样的话呢我代理比较简单,我可以很好地编辑它。

编辑完以后的话,我就可以生成啊,我要的这个f一撇形状变形或者形状啊,这是整个editing整个领域大概的逻辑啊,嗯基本上都符合这种逻辑啊,所以你要去做编辑,这个基本上你就可以看我找什么代理啊。

这个代理好那个那个用户好不好交互,交互完以后我怎么去得到我那个原来是这个形状的啊,形状啊,这个这个物理的形状好,那么代理有很多种啊,就代理上就是我刚才讲的那个handle啊,就简单一点,就是点复杂一点。

对线啊,还有网格等等,好我们来一个一个讲,我们我们先看这个点,在这个代理好点,代理非常简单,就是诶你要去编辑这个龙,左左边是一个输入模型哈,那么我希望把它的轮子这个上上这个上颚把它拉上去。

相当于让这个嘴巴翘起来啊,这个张张开来好,那么我这个代理呢就是什么,就是一个点,我希望拖动它,就是这个点是handle,但是你通过它的时候,如果你整个不固定的话,就整个龙会平移是吧。

所以呢我希望固定一些点,像这一圈的点把它固定,是不是我只允许这部分的顶点进行变形是吧,所以这个点是至少要要要到我目目标点,问点是在哪里是吧,所以它的这个代理呢诶就是一个这样固定的点,加上这个点好。

那么具体怎么去求呢,有不同的方法啊,就是这个方法大家仔细想想是个什么问题啊,好我再讲一讲一讲一下,就这这些这部分的模型是是是不动的,因为这一圈固定了,所以说明他外面的点都不动是吧。

所以动的点就是这个嘴巴加眼睛这部分啊,我圈的这部分好,这五点是不动,是不是相当于用钉子把它钉牢了,这个这个问题,这个点呢我让它拖到这里来了,问其他点是到哪去了,好我们前面5~6节课。

星星会不断的在讲差值,不断讲差值,这是不是一个差值问题对吧,唉这些点不动是不是一个条件,这个点变到这儿来是不是有个条件,我我我我我求一个这个影射啊,这个这个这个每个点变得变到哪去,是不是这个f啊。

所以这个一看穿这个问题,就是实际上本质上是一个插值问题,好我们来看看它的界面啊,这个这是一个呃编辑算法的一个界面啊,这这是个章鱼的模型,好,我要去让这个章鱼的这个触角啊进行一些移动,注意啊,他他这里呃。

他固固定的这些点啊啊这个点在拖动可以看到拖动过程中呢,这个形状是波段是在变化好,那么在变化过程中呢,它也可以控制这个点的朝向啊,这个位置不动,在朝向在变是吧,这个模型也跟着在变,啊也可以拖动啊。

也可以改变这个朝向啊,这个这个模型也会跟着也会差池这个点的这个朝向啊,这是一个典型的这样一个编辑手段,好那么所以这个用户交互界面非常简单啊,就是我固定这些红点,那么这个点我允许它拖动。

那么这些点就是一些要求的一些未知量,外面的这些点呢是不动的啊,那么这些点的是我这个点如果拖动以后啊,然后这些点变成什么什么坐标,就是求这个问题啊,刚才我们也分析了这个问题。

本质一个数学问题就是在求差值啊,求求这样一个函数,这个函数呢满足这这些红点不动是吧波动,然后这个点的f p i这个这个新号啊,变变到p i新的一撇这个形面积啊,要求这样一个函数,那么这个函数占用很多了。

就这个函数你显然你的函数求出来以后,我每个点去应用这个函数不就得到新的点嘛是吧,当然这个点这个函数当然有还有需要把那些性质对吧啊,性质就是诶我我这个零点到底有什么性质。

比如说它的这个这个点的领域保持某些性质啊,比如说拉普拉斯这个函数就可以去求了对吧,对这个函数同样也要保持这个拉普拉斯,就就自然而然就会产生这个一些一些比较好的方法,好我们来看。

所以这里面刚才那个分析实上本质上这编辑都是一个差值问题啊,你要去求一个函数f啊,这个这个变量是f f这些固定点加这个编辑点要要要插值啊,f还要满足一些性质,这性质可能是光滑性啊,能量啊是吧等等是吧。

好你去求他就行了,好那么这个这个例子上有好多证,只要求弹数嘛,大家就会想到是我们以前学过rb f好,那么rb 5你可以构造一个rba函数差值这些边界插值这个顶点是吧,插值插值法向都可以做啊。

所以早年就有rbf系列来做编辑,编辑竟然是求求一个求一个差值函数嘛。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么r b f可以做,那你其他的可不可以做是吧,这个最小二乘,这是swap 061篇文章叫moving啊,这个叫移动最小的层啊,就是这个点拖拖拖到这啊,那么那么那么那么这个点扭扭一下啊。

那么其他点这个点往下拖,问这个形状变道变到什么形状,那么这这里右边三个呢是三种不同的方法啊,这个就是它的ml 20的方法,这是以前的方法,可以看到以前方法这个扭矩比较大。

这个方法呢相对来说扭曲这个至少头部有些没有那么大,所以它有它的一个非常好的性能,因为它是移动第二层,这个下面的例子是把比萨斜塔啊,这个这个把把它把它叫校正啊,这个这个以前是斜的是吧。

好这个这个方法是这篇文章,虽然做二维的这个变形。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那同样适合三维啊,就只不过是三维空间中的最小二乘而已,好那么这这也是06年一个西瓜啊,这个这个这个这个文章呢就是在空间定了一个厂,这个厂是连续的,那么这个厂呢你可以把它看成啊把物体放在一个水里面。

这个水里面啊,这个每个点是有个流线,你只要去求这个流线,这个点在这个厂里面的运动一个一个变化啊,你就可以得到新的形状,因为每个点看的是个例子,这个例子随着流程变到这儿来,这个例子变到这儿来啊。

这就最后这个例子所形成的形状变成了啊这个这个一个新的形状啊,当然你说你要插指某个点啊,这个要让这个向量场来满足这个性质就行了,好像这张图就是一个典型的一个积分曲线的求解啊。

这个所以它这个这篇文章呢就把它把物体嵌入到一个场里面去,求这个场这个厂的话满足我用户交互的这个性质,这时候呢啊这个物体的变形就由这个厂来决定是吧,好那么具体这个厂这个有什么选择。

这个这个用这个厂这个好处呢,就在于这个厂这个厂的不同,在这里点的这个流流线是不相交的啊,所以自然保证这个物体没有直交,并且它还有这个一些别的性质,比如说我希望它的散度等于零,反正这一定是就是什么。

就是能保持局部体局部的体积啊,所以只要这个条件就会保持保持最性质,detail resume that,你可以对场进行别的约束就可以达到啊,这这是它的一个示意图啊,你可以看到啊,这个只要定一个长以后。

这个点就不是这个形状就会发生相应的改变,这是他文章中的一些例子,这文章一个强大的力强的一个方法,好处在于它中间的变形过程中啊,这个物体始终不会产生至交啊,因为长征这个不同的等高线是不会直交的嘛是吧。

所以它这个一个非常大的好处就在这,所以它比较巧妙的利用一个这个厂的一个原来做物体编辑变形好,那么你因为这个方法,第四个方法是拉普拉斯,拉普拉斯在我们以前有专门一节课讲的好,我这里就提一下而已。

阿巴斯是什么意思呢,就是我希望保证这个局部细节,而我们知道拉普拉斯这个向量呢是能够体验底线,一个顶点周边的跟周边的一个关系是吧,这个拉到向量呢越尖越长,这个点越尖是吧,所以如果我编辑后的话啊。

这个这个点啊,像这像像像这个点固定这个点往下拖,那么新的点成什么样子呢,我希望这个拉普拉斯向量啊,这个点不动或者是尽量相似,所有点如果都能保持这个这个拉布拉向量大概不动。

是不是这个形状的几何细节就保持了是吧,所以我们这篇文章在04年来利用这个拉普拉斯这个向量来做编辑啊,首先是拉普拉斯尽量的不变啊,然后满足用户交互的一些点是吧,通过一个变分就能使这个效果啊,这个这个好。

最后是通过一个求解系统方程组就可以来得到这个变形的结果啊,这个我们以前做做过作业没问题,这就是刚才那个demo说所看的那个结果啊,刚才那个demo就是拉普拉斯iting这篇文章的这个视频啊。

把把这个点往下拖,然后旋转这个这个这个爪子啊,就这个触角就能跟着变形啊,这个龙也一样啊,这个往上往上掰,它就能张开来啊,还还能做这种大的变形都没问题啊,好那么他也做了很多应用。

这篇文章呢也04年s gp这个文章引用率非常高,因为这个文章开始就是拉布拉斯坐标,微分坐标就开始流行了啊,这个应用也非常非常非常简单,它们它将是什么,把他的细节把它迁移过来。

假设这两个两个网格有一一对应,你把它的这个音对应点这个拉普拉斯把把它变过来是吧,把它把它圈啊,这个transform过来是不是就可以找到新网格,就可以找到这样的网格好。

那么这个是把人脸的细节迁移到另外一个人脸,这是把一个人头啊,这个可以看到没,把把这个兔子头啊,就这这个细节是是是人脸的神,是兔兔子的是吧,那么这个怎么做呢,就是就是假设交互一个一个边界。

这个人头跟这个边界吻合,那么人头这里的这个这个细节呢,是就连这个兔子头这里脸这部分的细节是用人头的,下是用兔子的,这时候求解一个方程组就可以找到这样的模型啊,这个呢实际上就是两个模型的拼接。

所以拉普拉斯啊也可以做人模型的这个融合和拼接啊,还可以还有这个细节的混合啊,啊就像这个也是一个应用,把把把它的那个割割下来啊,这个变到这里来是吧,但实际上中间就是一个融合,为什么呢。

这网格的这个细节是用它的这个呃,这部分的细节呢是用兔子的,这个细节是用翅膀的过渡一下,就可以求解一个方程组就可以得到这个模型了啊,那么中间过渡的过程中实际上是是个渐变啊,这是拉布拉斯。

你可以可以这个从1~0啊,这个这个渐变啊,只要控制这个拉布拉向量这个比例就行了,好啊,他同学也做得好,别的应用,把一个龙跟一个一个这个fine这个这个在这里做了,做了拼接是吧。

就可以就可以建模出这种分享的不同的物体出来好,那拉帕斯那篇文章出来以后呢,我们以前在那一课里讲了好多这种应用啊,就就还有好多好多变种啊,讲几个呃这个比较关联的变种,第一个变种呢就是这个婆送。

那普通方法呢,它这个跟拉普拉斯是本质上是数学上是可以证明是一样的,如果它的角度不一样,那这个普送这个文章呢是来源于呃03年一篇吸管啊,播送editing image editing,这个文章。

就是怎么把一个图像的一部分融合到另外一个图像的这个底色区域啊,让让这个边界看的是无缝融合啊,像它中间呢就是在求解一个啊呃两阶的这个偏微分方程,就是普通方程像它的这个这个这个做法嗯,非常简单。

就这就这是个框啊,你要怎么把这个里面的颜色融合呢,我这个框边界是颜色取成这个背景里面的梯度啊,就跟这个这个图像的系数是一样的啊,那么这样一个变分就得到一个微分方程了啊。

就是拉普拉斯等于这个这个长着就是这个梯度的散度啊,就可以求解,那么04年他们就把这个方法呢就推广到了这个曲面啊,也学了什么呢,我如果这这这个偏见我进进行一个交互。

它的这个交互这个这个所产生的变化呢就传到里面,每个三角形的梯度的记住独自需求的时候,系统就就就打反了,那怎么办,通过一个全局的一个普通方程,你身上也是一个拉不拉方程啊。

嗯啊这跟普通方程的这个区别就在于右端是零还是非零啊,呃普通方程呢是这个是可能非零,如果这个是零的话,就是拉布拉方程啊,好那么就可以得到一个这个这个变形后的物体,最后结果是这个是是这个这个结果好。

嗯中间还有好多别的方法啊,都是在保保证这个可变形过程中保持一些性质啊,像这个呃这文章呢呃我来解释一下这三点呢是是是句柄handle是吧,那那那这这个点呢比如说是像这来问这个形状词怎么怎么变。

这篇文章就是把这个求函数这个问题啊,我们以前学括号,把函数问题你可以定在整个区域上,是不是有零元函数定义在什么呢,定义在这个一些有限单元上面,就现在把这个函数分分解成很多小小函数。

就没函数定义在这个这个小扇形上面是吧,所以我只要去求出三角形怎么变化,诶,我就求出了最后的这个变化是吧,好那么我没三角形怎么变化呢,我尽量的保持三角形跟圆三角形尽量的相似,就是又回到以前的ap这种思路。

对吧好,那么如果单独去去去,毕竟它呢可能裂开来了,最后在什么global再求解一个方程组就可以把它缝合好嗯,那么那么这个呢是03年啊,真的是07年,这个就后来这个在3月中用拉普拉斯这个角度。

或者拉普拉斯的这个语言,又可以来来那个重新对这个问题进行formulation啊,什么意思,就是每个在空间变形过程中呢,要保持这个我的拉巴斯向量,或者说我的这个旋转没事没发。

角形在空间只发了一个旋转不变形,所以它这个也叫ai ap啊,as read as possible,我们08年那篇参考文章,这个这个很多启发也来自这篇文章,这是它的变形变形的一些结果。

从上面那个图也可以看到,那么那么这个呃把一个开始出初始的时候只是一个这样的柱子啊,把柱子,然后把把上面这个呢边这个样子来啊,那么开始一个初始值是什么样子。

然后通过那个as rich as possible那个迭代就可以生成这样一个模型啊,啊下面是他做了其他更多的例子啊,就看到ap呢比当年的这个纯拉普拉斯较好的地方呢,就是它中间会膨胀起来啊,如果做得不好。

这是拉布拉斯,结果就会就会收缩,因为拉布拉向量是跟这个旋转是有有关系的啊,如果你旋转学不好的话呢,就拉布拉斯坐标保持原来坐标呢就就会出问题啊,好那么05年这个这篇文章当时也也是蛮有意思。

他这文章呢是呃就宏文讲一讲嘛,就是它是保持了这个曲面的那个呃用了微分几何的曲面的,机基本型和第二基本型,它本质是什么,本质就是保持了就表现出来是相当这个向量的啊。

这个一些一些在在这个顶点的坐标系上的一些参数上,文章可以可以证明它保持了这个曲面的第一基本型和第二基本型,你在做编辑的时候呢,如果你保持原来的曲面曲面的第一行和第二行上,就是保证了它的一些几何性质啊。

就可以通过这个机异型和二型从建出曲面来啊,就是他的思路是这样,大家有兴趣可以自己去看啊,我就不展开,我主要大概讲讲做一些思路上面,无论哪篇文章,他都抓住了某一种几何性质是吧。

你你可以看到是前面的rbf找不到了呃,播送巴拉斯到后面的这个ap是吧,都是在保持某些性质,像这篇文章是保持什么,保持曲面的一型和二型,用到了数学上的,就微微解上的一些性质啊。

那么通过点拖拽就可以看到这些方法上面有有很多这种方法是吧,好那么只不过这个handle变成什么,变成了一条线嘛,所以方法上面大部分都可以共用是吧,这个编辑现在就有比编辑点要来得更有力一点。

比如就是说呃这有一只这个鸟是吧,我希望它的脖子歪一下,我可能交过这样一条线,那那那那变成白的是会会来得更加更加一点是吧,那么你比你去交互很多点要来容易,所以呢呃怎么用线段或者曲线来交互啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就可以省很多交互量啊,比如这个很早年就有这个方法来教过一个形状诶,我取中间的一个轴啊,这个轴可能是中轴,也可能是股骨架啊,中轴是数学上的定义,是有精确定义的,上节课提到了是吧,股价呢是人为可以标的是吧。

好我把我把我把这个这个中轴骨架它编辑成这个形状,那外面这个形状就可以跟着跟着变是吧,这里呢有两个,一个是怎么编写这个曲线啊,这是有问题,那么这里就有一个词啊,这个做动画的同学可能做过就知道了。

我怎么把一个底边,这个原来是别人点股价上的点进行观点啊,这个就是一个叫blending,而且全就是这个实在重画,做逛街动画的时候,这个非常重要,你这个诠释的好,我这个股价变了以后,我的形状就变得很好。

如果设置不好的话,这个全片子不好,那么这个可能变形来就会出现滞销啊,因为这个例子比较简单,这些复杂的例子,这个股价是这种复杂的,然后然后然后然后那个形状呢就是这样的话,那么那么特别是碰到这里的时候。

它既跟这个股价相关,又跟这个股价相关,这时候他他们那个圈我们来影响它这个这个权就非常重要了,如果诠释的不好,我去触动股价的时候呢,这个地方呢就产生了非常不好的现象啊,直交啊或者是空洞啊等等啊。

所以刚才说的那个啊那个g函数啊就比较重要啊,就对g函数我怎么根据这个呃消泡后的p一撇得到我的s一撇啊,那么这里就是要要要要去怎么样根据骨架来决定我的形状啊,这个这个变化非常好,好。

这个你可以把一条长长这样一个鱼啊进行绕啊,那后面还有很多人提出啊啊我怎么去编进行文,我交过一条线,然后把把它把它把它这个交汇一下,就可以把这个腿给拉直。

所以用这种sketch或叫skeleton来就编辑到适合于那种长条形的,比较天然的羽翼骨架的一些形状是比较比较好的,这是另外一些例子哈,有些例子还去交互什么交互啊,这个一个轮轮廓线是吧。

来把这个轮廓线改成这个一个这个形状去,里面也也跟着变化了是吧,都没问题,还有把他的脖子歪歪啊,所以所以这里面这个最重要的东西呢,就是我这些线变了以后,我这这个曲面怎么随这个线来进行变化。

就是这个这个mapping啊,这个刚才说的那个影射就很重要啊,这是另外一个用骨架来做变形的哈,这个他呃这骨架呢不是精确骨架,它是用了一个文外图,就是我认为diagram的图的。

这个上节课我们刚刚讲到是吧,然后通过这个文案或者这个立方体啊,就是就是四面体来进行一个呃一些性质保持,然后股价变了以后呢,就是新媒体在变化,像那种的相当于就根据根据刚才那个ap 3角形分解一样。

它把这个这个连续演示分解成到了这个每个四面体的一个变形啊,只要你这个变形保持住啊,这个啊变形效果就就能接受啊,这是它的一个例子啊,啊这也是早年一篇文章叫wise while呢。

是理解起来就是怎么怎么现是吧,它呢定义了一个比较特殊的一个一个编辑编辑,这个编辑手段啊,定了一些这样这样的轮廓线啊,这个细线线呢就叫wi,它又通过编辑这些while。

就是说把把把这把这个这一圈变大一点啊,把这个鼻子这一部分把它拉长一点,这个曲面就变成变形是吧,所以这里有一个问题跟刚才skeleton啊去那些一样啊。

就是你只要把曲面原来曲面跟着五二十间的对应关系怎么变形啊,这个定义好,那么我通过编辑这个while就能够驱动这个原来曲面的变形是吧,具体怎么怎么去做,每个人都会想到自己的方法做,没问题啊。

关键是这个思想啊,就是哎我我我通过这个这个比较愉悦的一件vs我来编辑,它是不是就就更加形象一点是吧,好这边是48505年一篇文章啊,就是从他的这个编辑呢,这个sketch呢就是什么。

是通过这个cvt cvs,什么呢是指轮廓线啊,比如说这有一只耳朵是吧,我我首先啊交互也好,自动检测也好,检测出这个轮廓线,然后那我用户把这个轮廓线进行修改,问这个耳朵是变成什么样子啊。

我这边看一下蓝色的是原来的这个耳朵的轮廓线,我教过成了绿色的,那么这个耳朵变成什么样子呢是吧,然后你教过这个样子啊,这个耳朵可能就变成大一点,尖锐一点,好,我可以交互的稍微小一点是吧,就变成这样子好。

所以你可以看到如果是沿着轮廓线去交互,大家可以你想想啊,我应该保持什么样的形状,我的耳朵还是认为是一个耳朵呢,是吧啊,这篇文章上处理思想啊,跟04年那边拉普拉斯是差不多的啊。

只不过他交互手段变成了sketch,变成cvt,它本质上还还是用了拉普拉斯这样一些这个这个报纸来做这个这个呃,这个结合性质的这个啊优化啊,好这是他的另外一个例子啊,就是当时做的效果还是比较好的哈。

你这个边界变成这个边界,然后中间的这个曲面啊,这个保持拉普拉斯就可以来来这个得到更好的解,所以基本上当时提出了一个这个survisketch的一个概念,好同一年也有工作,就把这个推推到的那个体的。

就是利用这个铁里面,它它把一个模型生成一个四面体里面进行填充,然后里面的铁是这个顶点,边面也是构成一张图啊,所以保证体里面的这个拉普拉斯就能够保持一些,就比如体积不收缩。

以这个保局部保体积这样一些性质是吧,所以把这个表面的拉普拉斯就像是把二维的拉巴斯推广到了三维,拉普拉斯就这章是在做这个事情,这这时候呢他他有了这个提的这个拉80,所以它很多情况下不会收缩啊。

因为它这个保保证保持了那个生命体的拉普拉斯啊,就不会让这个这个表面的拉倒是那样进行呃,这个这个这个收缩它还是会保持一定体积啊,这种现象就就看得更明显了是吧,他这个他这个部位不被这样挤在一块。

也不会进行碰撞,基本上它还做了做了一个应用,怎么从卡通图像来来来生成这个三维模型的这个变形序列啊,嗯实际上都都在都在你和他的上的轮廓线,然后用这个铁的拉拉斯就够了。

好那我们看一下基于这种线或呃这个草除代理啊,你看到有些是交互它的future,有些交互它的轮廓线,交互它的这个骨架啊,还有这个wise,还有还有这个这个图像对吧,就看到就是无论你用什么。

像你关键核心还是构成那那个那个函数,你保持什么东西是吧,是保持拉普拉斯还是保持一些别的性质啊,这些胶布呢你都可以去自己去做扩展和设计好,那我们再讲这个更加复杂一点的这个这个这个代理代理呢。

它不是一条线了啊,它不是一维啊,它是一个什么三维或者平啊,一个一个三维的这样这样一个麦序了,但是呢这个但这个mc呢就比原来的mac呢是要简单,比如说啊我以这个除了这个呃,可能这个模型大家看得出来吧。

是是个鼠标啊,中间还有个古人哈,也也也会影响到这个鼠标的这个这个形状是吧,体里面,鼠标是不是跟着放大,那你只要定义好鼠标上的每一个内部的每个点,你就可以去啊,就代理以后。

那里面的每个点是怎么变这个关系有了你就可以去做的事情是吧,好大家想想这有什么可以,你可以来定一些关系呢啊你可以讲讲不同的函数对吧,那你是不是可以在你这里面定一个呃,这个这个这个三三个张量的变量条被这。

那你就可以定义中间的一个一个体了是吧,然后控制这个这些顶点就看成是这个曲面的北造体的控制顶点,你不就可以去控制里面的所有点的这个这个变形吗,或者函数关系好,这就是86年setbg啊。

这个发明的这个f b d,所以他能把这个模型嵌入到一个非常规整的一个六面体里面啊,这个llis有规整体啊,然后这个nice呢它它用一个这个张量的比值去定义,就p i j k呢就是这些零点啊。

所以里面的任何一个点就是u v w啊,就是由这些点来定义的好,这些点进行进行编辑以后,是不是任何一个点心位置就可以算出来啊,就把每个点给他介绍一个新的位置,就可以找到一个新新的形状啊,就这就就这么简单。

这个这个里面的点都是网格吗,每个点算出来再保存,通过关系就可以算出新的形状来好,这就是当时86年,但是也呃30多年前了啊,34年前啊,那你可以想象那时候的计算机也也是非常弱的。

能做出这个效果还是不错的啊,我把这块放大啊,做做编辑啊,所以就可以得到这样一个形状,就水瓶也一样,我把中间一个一个平行,这样一个伸缩就可以,然后这个题呢容易编辑,就影响这个里面的这个形状的变化啊。

是啊再用那个另外一个语言,就是这个这个形状嵌入到了这个体所定义的一个空间啊,这个体这个这个代理变化,它的空间就变化,就能影响到这个形状的变化啊,所以思想都是一样的。

只不过这个代理呢这里就提升到了一个空间的一个网,北子你控制点这个控制顶点啊,平行进变化曲线是不是也跟着变化了是吧,好更广泛的一类这个代理呢我们把它叫做k局,k局是叫笼子,鸟笼的龙啊,鸟笼就是你把一匹马。

你可以看看周边形沿着这个曲面具体怎么构造,本身是一个非常复杂的问题啊,你可以手工,你也可以啊,当当当年也没讨论啊,我们后面也有很多paper,来来来来来,那个研究怎么去找一些比较好的这种啊,k局代理。

好好这个这个这个k就找到以后的话,我对这个k就进行编辑,是不是就只要拖动几个点就可以变到这个形状是吧,好我问这个马变成什么形状啊,那么这个是什么问题啊,y后面这个简单多边形变形了,里面每个点都会变。

是不是我们就是我们以前讲的重心坐标啊,我只要把里面内部的每个点有边界上的点所表达出来,所以坐标表示出来,那么内部的这个网格怎么变就可以算出来,好好一起到数据坐标。

你讲了有个有个网站是不是是不是列了好多好多这种一发不同的形式,哈哈发明出的这样的一些技术,大家可以去看啊,那个可以可以回去找一下我们以前讲的总体坐标的那个那一小节啊,工作很多啊,value的有哈。

莫尼克有什么什么很长短的重要标,还有一种是叫motional duration mulation,它的代理是什么呢,它代理就是点点点点很这个曲面顶点很多是吧。

我呢可以对它进行一些简化或者叫光顺或者叫简化吧,啊简化这个顶点就少了嘛是吧,然后呢然后我就在这个顶点少在顶点的进行编辑以后,再把这个细节给了给它加加回来,细节给它加加回来啊。

就得到一个啊这个原来形状的一个变形啊,所以所以这部分是我操作比较简单是吧,但我这里这个例子里面是呃,这个这个这个这个形状只是做了个光顺是吧,你肯定可以做简化啊,像这个就是例子,就是做简化这个顶点啊。

这个曲面简化后可能只有几十个顶点或面片啊,对它编辑就相当方便,把它们之间的差异啊,把它加上来就变成这个样子是吧,那么你们上周作业就简写或者简化,那么简化的那那个简化的那个算子的这个量就是细节。

你把把他加回来就可以找到它好,所以你们做过卓越九啊,这个这个编辑效果或者算法就能实现,那么mc这个process你看到从灰尘的lis到cage到这个简化的形状啊。

所以他们会寻求啊不同的这种简单的这个题来进行这个代理啊,编辑好我并进行编辑,这个或者叫变形,还有一种这个叫transfer,就是我呢我骆驼进行编辑呢,我可能我我我不知道这个骆驼怎么跑。

但是呢哎我知道这个马的跑的序列,假设这一行是已知的是吧,能不能让骆驼也来跟着马将跑的序列,我也可以做出来是吧,那么这个叫transfer叫什么迁移马的,这个是变形效果,把它迁移到骆驼上面是吧。

所以里面一个关键的或者叫大很容易想到,你只要跟骂马跟骆驼有个对应关系,你把这些买了这些所谓的一些性质,比如说一些每个三角形的旋转,把它牵引过来啊,ly到这个骆驼身上,就是它的这个线条,这就变成它吧。

它的偏线到这就变成它吧,就这样可以做,是04年呃,应该是这些年这篇文章第一次提出,来来哦,不来到这个模型上面。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

06年呃,也是一样的哈,就是你可以看到我,我去进行一个曲面变形,我把它迁移到另外的形状。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

另外两点上面好,后面可能内容还有不少,我们快点讲啊,那基于炒作建模也是一个啊这个比较流行的啊,前面虽然见讲过几个基于sketch,sketch就叫草图啊,这个叫sketch。

就是根据朝这个建模呢就更加一点就是什么我我我用户教会一个草图,能不能很快得到一个商业模型啊,就想达到这个目的,就这样的话,小朋友只要会画画啊,画画一些草图,我我就能够啊去就是自动产生吸商业模型出来啊。

就让他建模的门槛可以进一步降低,这个早年这个中国画一些圈呢,画一些,这样的话就是能不能建出一个这样的小这个卡通模型出来啊,那么呃这篇是我们10年和10年前了啊,当时还有我这个摩托生做的啊。

就就用骨架来这个草图啊,那么这个骨架呢我们这里面每个骨架的关键啊,节点上面去定义定义了一个球啊,这个是可以修改的是吧,就这样的用户只要去估呃交货这个股价,然后呢这个就可以生成这个商业模型。

最后再用细分把它进行一个光顺啊,那么这个方法好处在于什么呢,在于这个甚至这个模型呢就比较规整,因为它可以是四边形化啊,有利于做后面的细节去雕刻建模,我们等下就会讲交易建模啊。

好我们看完这段视频可以看到嗯,中间任何一个球这个关键球都可以进行一些修改啊,中间这些对征信可以保持啊,那么这个网会出来了,这个网格有因为它那个是个骨架生成的,所以它的网格基本上都是四边形,有个好处。

有利于这个被home后面的那些啊,啊所以所以后面我们也把这个技术迁移到了另外一部软件啊,让小朋友就可以通过简单的这个交互啊,生成这么多好玩的模型,好可以变成model,这个从上最早的鼻祖应该是这篇文章。

这个这个这个文章叫teddy,非常非常有名好,我后面也有很多文章不断的去去去去进行一些改进啊,或者从不同角度上去进行一些升级啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有就我怎么样通过一个sketch建一个三维场景啊,那么这个sketch怎么去理解这个sketch是什么模型呢,它它有个data base啊,导致在这段这段贝斯里面的一个三维模型。

把它把它把把匹配进来放进来是吧,好那么这个呢也跟后面要讲的这个最基本的这个model有关系啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们后面还会再再展开一下啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

第六本这个叫scary啊,这个是什么呢,就是看看到我们在特别是在一些游戏动画里面啊,经常看到这种高细节的啊,这个这个几何细节非常复杂的一些模型,这个这么这么多细节,那么是怎么来做的呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊那么可以看到人类去雕刻一些细节的时候,会有不同的工具啊,去把这个材料给它给它破掉,或者是把它增加是吧,所以呢你看看这个视频,这个雕刻建模啊,这个键盘是什么呢,就是我我一个模型上面呃。

我可以用好多好多不同工具啊,你这个工具呢可以把它理解成是个刀子啊,那刀不仅只能割掉物体,也能够也能够挤出一个物体啊,通过这个非常小的刀啊,实际上是在工具里面叫叫brush,叫比刷,就是在那上面刷。

就像辅助校准面刷刷刷颜色一样的,只不过这里是刷刷一些这种啊条纹啊,或者这些细节上去就可以,也让一个从一个粗糙的一个网格就啊慢慢慢慢刷刷,是一个非常精细的网格出来啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个叫做雕刻建模啊,雕刻建是呃有好的工具啊,呃像像在大家如果不再用过门哈,像box啊,这brush brush是比较有有有有名的一个软件,就雕刻建模可以建出极其丰富的这个结构细节啊。

是auto desk recall,早年也是比较流行,你可以看到这里啊,你如果不选择不同刷子,它刷出来这个细和细节是不一样的,可以看到它有它有好多刷子,还有还有还有这种呃有点像纹理合成的刷子啊。

可以刷出不同的这这这种凹凸,这样小小小颗粒啊,所以很多工具也提供了不同的这样一些这个刷子啊,然后你可以在表面上进行一些雕刻啊,进行一些细节添加啊等等等等的这样一些建模好。

这是一个比较典您的一个案例案例啊,这个网格可能开始没有细节比较光滑啊,那呃给它加密以后呢,我雕刻啊就可以调细一点,然后又可以给它加密再雕刻,最后就是要设置一个非常复杂的。

像毛发这样一个呃这个这个这应该是牦牛的一个模型啊,啊那么修改editing呢讲了很多,我们这里做个简单总结哈,这个前四种啊啊只只是方法论上面,我把它归纳成啊啊嗯我也可能以前我也有人这样归纳哦。

但是我是今这个这这段时间我我自己来归纳,就是这个的这个proxy代理代理也可以简单的点线啊,还有复杂的网格,还有其他的是吧,还有什么从别的形状去学啊等等啊,这些是上里面这些工作。

就刚才讲的都是在保持警细节,保持什么拉达斯啊,保持距离啊,保持这个体积等等是吧,还有一种变形啊,这个上就是纯纯物理的,就基于这个物理的,比如说我一些材料我要进行检查进行看现在变形。

那么这材料变形实际上就要遵循这个有限元分析啊,这个材料力学,弹性力学等等啊,那么这里面就是属于另外一个重新学的,第二个就叫station,叫叫station领域,所以我我们这里就就不专门讲啊。

这个这个做一些这种啊,顾理财这个防防针啊,game是201,就在讲讲这个液体的方针是吧,就这里面就是也是变形,就你想象一下一个果冻,我给它一个力,这果冻是不是也也会进行变形啊。

这嗯这时候呢你你就不能用纯几何的方法,用物理方法去做啊,就就会更真实一点好吧。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我们这节课呢就不展开啊,我们不去讲这个事情好嗯,也提到过这个推塔均衡的这种model,这是最近的10年来这个比较多的文章啊,这个现在这样一些呃技术这个它背景是什么呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

背景就是说模型越来越多了啊,你可以看到网上还有共享网站,有很多模型啊,这个以前呃100个就算是比较多了,现在都是上万十万百万级别的模型好,那么怎么样从这个模型上面去进行。

也许啊这个这个从用性把你有的模型的一些一些部件重用起来,这就是呃data塔基本model的一个目目的,比如说啊好我们这里有个图啊,这个是04年cpu cpu为一篇文章,这些思想挺好。

就是说我我我要我们数据库里面有有这么多椅子啊,那么我我能不能从不同已知提可以不同的这个部件把它煮,从一把新的引子出来的啊,就是诶我从example里面去去去组合出一个东西,东西出来是吧。

所以我我怎么我我这个把数据库里面的这个以及呢做语义分割线,不同部件,然后再通过我的用户的交互也好,还是选择也好,就可以生成新的模型出来啊,这这个模型在数据库里面是肯定没有的是吧。

可以又可以增添或者交充实这个数据库,那么这是另外一个例子,它这个从数据库里面不同的帆船组合出一个新的帆船出来啊,这个这篇文章是算利用了这个机器学些里面的这个bs网络。

他数据库里面有大量的这种呃这种动物模型,它又把它分成了这个身体呀,尾巴呀,腿呀,头发等等部分,这样的话呢就是这些模型里就构成了这些语义部分的一个一个图,这个单从数据库里面就可以找到很多概率啊。

比如我这里有个身子,那么大概率就好,这边就有尾巴,所以它是个条件,概率已知身体还有的情况下是什么样的尾巴,数据库里面是可以得到一个概率预测的,那么通过这个概率预测可以去。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当然会拟合出一个贝斯这样这样一个概率模型出来,这时候呢它有界面啊,好我这里面有好多动物的头,也有好很多角是吧,好我用户讲他教不出来这样一个形形状,问大概是什么头会会概率最大啊,这个系统会给你推荐出来啊。

可能可能是个羊头,也可能是个牛的头啊,因为这个就有下面这样一个伸腿和脚的情况下,这个头是什么,什么概率是可以由刚才贝叶斯这样网络给他推断出来。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

后面还有晚上读paper了,我们就简单提一下,就这篇paper是把这个这个三维形状呢把它印到一个高位空间啊,在这个就嵌入到一个高度空间,然后在高度空间中啊进行一些这种相似性啊,皮皮背啊。

甚至来擦拭出一个新的形状,最后再还原到我们的三维空间,就得到了新的一个引子啊,啊这本是早年啊,也有8年了哈,这个当年呃我我参与了一篇文章,就是怎么从一个图像去构建一个椅子啊。

那么这个这个图无相的一个信息呢,就是这个cat就是这个轮轮廓线啊,所以那基本思想就是我们去数据库里面去找一找一把椅子,跟这个轮廓线最相似,然后再进行变形,但是过程中呢我要保持已知的这个一些这个这个特征。

比如说四条腿要平行啊,要等长啊,这个坐垫要平行地面等等这性质,所以并行过程中是要满足很多约束的,这个约束就来源于这个已知本身的结构啊,但是又要遵循这个图像的轮廓,已知的轮廓,所以它只有两两个约束。

一个是轮廓要向图像的已知,第二个监控要保持已知的这个语结构,这时候在基本变形就可以得到一个比较像这个这个图像里面,以啊这个已知的这个项目模型啊,在西瓜2012年好。

当年我们只说唉我们通过谷歌啊去输入chair,会找到好的好的好的已知,那么从这个选选择已知就可以去得到一个新的这样一个模型出来啊,当然数据库里面没有的椅子,像像这种红的,我我们就做不出来。

因为数据库里没有不存在这样的相似的椅子就就没法做啊,这是当时一个10年第4年的一个图,好嗯就是这个是清华大学啊做的一篇文章,用的也是用图像来来做这种商业模型,它里面分析了这个aptive。

就是有一些啊这个叫叫做呃这个扫扫略啊,就是这个管管状的,所以它定义了好多阵容啊,那广义的cinder去fit这些这些图像的celebrate,这样就可以造出这样一个模型出来。

这是我们13年一篇cp文章啊,这是我的一个博士生啊,直达博士就是1年有篇文章叫shutter joe,就是他通过大数据,然后通过这个大数据啊,就可以呃让人画画的时候呢。

给出一个阴影来指导用户啊去画画的这个像啊,就像一把椅子或像一个衣服,那么我们把这个想法见证到了商业建模,就是我们建过程中,在交过程中呢,我们背后也有些阴影,这阴影是先走呢。

就是提供了大概率说你往往这个方向画,能得到模型的这个效果比较好啊,你就遵循这个阴影。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你就可以去啊不断不断去优化出这样一个模型出来啊,是当时的一个demo,我们做完论文以后做demo,你可以看到它的过程中,这个阴影是时时刻在变,为什么在数据库里啊,会提提出这个根据你画的这个结果。

然后去找到相似模型模型,这个概率呢就提供了一个这样的阴影啊,让让你去follow这个阴影,画的会更好一点啊,中也是保持了一些这个这个high level的一些特征对称性啊等等。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这个我就不详细讲啊,时间有限,然后这个这个是最近的5年吧啊出来大量的这种叫generative models啊,这个就是game啊,这个生成对抗网络,利用这个身份对抗网络生成。

那我们呃网络是呃神经网络,我们以前讲到它的本质就是一个函数对吧,那么这个函数呢它在那个这个叫叫隐空间呢,它里面fit了一个高斯高斯模型,那么高速模型呢怎么就废除了那个隐空间的这样一个分布。

然后呢中间随机给给一个数,那么就用这个这个这个函数呢就可以生成一个新的模模型出来啊,这些模型呢它并不是原来模型的拷贝,它是中间的某一个差值出来的是吧,差出来那大概率可能会是个已知,当然也可能不是已知啊。

那么呃呃原理是这样啊,就是说通过这样一个生成模型就可以生成很多的新模型出来,当然这模型要好的话呢,最后还要接一个对抗网络,让真实的尽量的好,不真实的尽量的差对吧,所以这样这样对抗生成。

看这样这样这样一瞬间以画这个这个生成模型就会越来越精准啊,就这个最近几年出了大量文章啊,我这里就不讲,大家有兴趣的话可以看一下那个账号,就是sf u,就是山东freeze的大学,加拿大啊。

嗯这个张浩教授在去年我签了graph啊,邀请他来做个报告,他就讲了这方面工作啊,啊也写了一篇这个这个star叫state of art综述,有兴趣大家可以看一看啊,你也可以关注一下啊。

深圳最大网络呢它确实能啊容易生成这样一些新的模型,但是呢这个模型呢这个精准度啊,这个有些时候好,有些时候不好呃,写文章的时候,大家都说是会挑一些好结果来秀嘛,不好的,这个这个不锈是吧。

就因为它本身是个差值嘛,它差值之后来中间结果到底有没有语义,这个是没没法定的啊,当然后面也有一些呃,研究者呢会把这个语音信息也放到这个网络里面啊,让这个生产出来的东西啊,这个保持的更好。

好想想这个国科大许凯他们做了一些工作。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好啊啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有十多分钟吧,好我们讲讲讲完这个morning morning跟那个editing这个呃有点有点关联啊,什么呢,这motion是什么,是给定这样一个a好,就一这两个形状是给定的。

我要生成中间的这个这个形状好像要插值出来,你把这个b看着两条形状,中间形状要差值,就是为了做这个关键帧动画啊,我们呃我不知道以前讲过那个关键词没有叫key frame animation,关键帧。

那么那么动画师可能只涉及一些关键帧,中间的啊一些形状的,所以中间很多很多形状不可能中华失去设计,那么他就这种生成啊,所以呢中间呢这些形状也是通过通过要生产出来是建模出来,那么它建模出来怎么建呢。

是根据a和的信息来混合出来的是吧,所以它是从a和b差。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这个很有用,就是用在工业设计,这个就是关键帧动画啊,k f我用户设计的,然后硬币硬币between是这个擦出来的,这样的话就连续就可以一个马上奔跑好,上面的是在工业设计里面啊。

这个呃呃比如说这个是一个比较有名的,下面这个应该是个葡萄酒瓶子啊,这个是一个可乐瓶,但是呢你完全嗯跟他这个相似呢就侵权了是吧,那我能不能诶这两两个做的做的知名品牌。

我中间那根据这两个形状呢差指出一个新的形状,我中间挑挑一个还不错的,作为我们这个这样这样一个新的新的产品的外形啊,像这个右边这个是呃呃四个角啊,这是给定的眼镜。

中间可以生成很多很多查指出来一个心中间的眼镜啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就有这这四个眼镜的形状和特征啊,跟那个物品或者demvp我们讲的变形是什么,知道a我去找一个函数,然后找到b是吧,那么那是什么,知道a和b我要反求一个f啊,所以物品相对来说更难一点。

因为什么a和b我我要我要我要找这个f是什么,是要把a变成b就是指哪打哪是吧,这个呢是呃我这个f我反正具有硬性值,我打打字码是吧,这个这个形状到底是啥,我也不知道,我只要把bf求出来。

我就可以求出这个变形的物体,但这个什么b是要给进的,所以这f要怎么怎么做,也可以叫叫做blending啊,混合呀,平均啊,差值啊等等和全c选项和过渡啊,好那么一个好的好的morning当然要比较自然啊。

而且用户也要可控,然后问题很简单啊,我们再再描述一下,给定临时这和一时刻的两个两个模型,我要擦拭出中间时刻的中间模型,使得让这些模型光滑的过渡过来好。

那么这中间的模型就是morphine所要做的做的事情好,那目的呢在这个呃这个呃我们重新学建呢,基本上就会把它分解成两个问题啊,因为你要去擦拭他们新装,你首先要知道它们之间点缀关系。

所以这个第一个问题叫correspondence problem,听完以后,我就中间就可以生成新模型了,因为每个对应顶点我就可以生成一个新点是吧,那这个叫past program,叫路径。

问题上就是中间过渡这样这样一个路径啊,所以有两个问题,那么这两问题我我我我那个分别来讲啊,这个稍微讲一下思路啊,工作也也不少啊,那个要散开来也不是这么短短的时间,讲完好,我就讲一下思想好。

我怎么样给你一个a给这个b,我怎么怎么怎么样生成他们中间这个叫叫做一一次的这个网格呢是吧,这一次网为什么顶点一一对应三仅仅要一对应,是不是就这个就一致了是吧,所以一致的话呢。

这个这个叫compatible mah,在有些论文你叫consistent会回去叫ter map啊,叫intercept map啊,这个曲面之间的这个这个这个影射,他就在找两个曲面这一个一一对应映射啊。

所以这前面呃你呃两周前讲的那个影射就在这里要用要用到了啊,就这啊如果引申这一节,大家同学还有经验的话,印象的话就知道它就是个优化问题,好好,那么所以这里面你要去找这个影射,这个中间还是有很多挑战的是吧。

两个模型顶点原始顶点是不一样的啊,还有特别是几何特征也差别很大,你怎么怎么弄是吧,好那和方法论上面的还是呃大家基本上就是呃会比较相似什么呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我把第一个就是我找一个公共的这个这个区域啊,比如说这个是模型a这个是模模型b我把a呢也参数化到一个工区域,b也参发一个工区,那么和逼着这个这个突破关系就在这个工具上集的体现。

像这个工工区域是不是就是差的化,这个b是三维模型嘛是吧,所以你你你变成一个,比如说同样上的话到一个八边形好,那么这两个模型一个是a的,一个是b的,那么这两个是不一样的,这个to b to b接口是吧。

那没关系,怎么样,我把我把他们两个叠在一块儿啊,这两个拓扑结构呢就生成一个更复杂的图图模型啊,中间有些是是相交,是不是这个就生成了一个公共的拓扑结构,结合以后哪些点增加了哪些三角形增加了。

我再把它引射回去啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就得到了a和b的一个a和b的一个加加密啊,那么因为他们具有设了一个公共的一个加密这个拓扑结构,所以说a和b呢就就有有公共的一对应关系了啊,这是这是非常自然的一个想法啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

早年都是这样做啊,那么当然你说我我对封闭曲面,我把它引申到球面啊,在球面面上进行刚才那个操作可不可以。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

没问题啊,就是在球面上来操作这个事情啊,还有诶我不是在在那个曲面啊,曲面上做,我把它多多简化,如果然后简化的这个这个容易因为顶点比较少嘛,就容易建立一对应啊,在这上面建立了经营以后。

再把它放返回去也可以啊,这99年啊一片西瓜啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是这是这是另外一个效果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以他甚至可以把人跟动物也生成一个compatible,一个mesh啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是不同的人,而是把它一定之后的啊啊还这些方法呢什么我就把问题化简啊,我把这个呃两个模型,一个报纸,一个一个一个死者啊啊一个一个报纸是吧,把它分解各个部分,每个部来分别对应啊,就整个模型就对应好了啊。

就是把一个大的问题变成很多小问题,但分解到什么程度,这个方法当然也是个难的问题了啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以这篇文章只是进行一个尝试,还比较早年的另外一篇文章。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就根据这个股价来进行分解啊,最近几年也有也不少文章啊,你可以看到从零次到最近的1615,还有好一些文章都在做这个事情啊,啊那这些文章做事情呢就跟刚才那些思路不一样,咱们把它他们把它变成一个map。

问题就是我怎么把一个网格a它的拓印到一个b上去啊,然后这个这使得呢这个这个扭曲极小啊等等,好那么但如果要了解这些文章,可以可以看一下我们今年啊2020年是去年了是吧,去年我们学社管文章啊。

是我这个博士做的啊,就是这篇文章呢是呃这个就是做了一个很的一个mesh啊,那我们是可以控制这个这个扭曲的键的上键啊,就是你给我一个扭曲的上界,我能够生成一个compad默系,就是三角形。

当然借越小网格会越密啊,但是我们得到非常高效的算法啊,大家有兴趣啊,我们主页上应该也有代码。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

大家可以有兴趣可以看一看,是我们的一些文章的图啊,就像最近几年这个要显示两个网格的一次性,就大家都会用这种带带这种不同字母的这种格子放在一个放在一放,这里你可以看到这个这个u就对应这个这个右侧部分是吧。

那么那么这个w就对应这个w w w咱们在哪里啊,或者是找一个d对应这个啊,就这样哈,就这样回来就看得比较清楚他们之间对应关系啊,还有当然对不同拓扑那个从数学上来讲,一个球跟一个环不可能有一对应是吧。

但是你只要设定一些规则,比如说这个环都是对应这同一个点啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个就就就可能了是吧,那这个呢基本上这种方法呢都比较特殊啊,做出一些反正你去指定一些这个特征,对应也能做出一些效果出来,但实际e中啊这个比较难用好,那么对应在二维状态上也做了很多啊。

对对应关系这种求解啊,是一种形状分析的一种一个任务,就说怎么样去找两个形状的对应关系啊,我这里看一下啊,这是呃之前做的一篇文章,就是给一个两个形状怎么去找他们对关系啊。

就是为为什么这个第二个点对这个第二点是吧,我们当时真的是把这个形状的一些特征点把它找来啊,我们我们特征点之间最近找好了以后,别的点中间进行插值就够了啊,所以关键是招两个形状的正点,那么正的点是什么呢。

就是那个曲率比较大的地方,或者说呃这个形状有余日不转这个地方就变的地方,那么最关心的呃这个呃大家有时候充不影响,那么像像下面就是什么就是差值路径,那么呃两形状f一和f2 啊。

对关系有了中间差值一下就行了是吧,我们差值呢最简单就是线性差值啊,我我这这一点中间根据t t是0~1,我我0。5就差这个点,这个网格就出来了啊,中中间0。5这个时刻的这个曲面就出来了是吧,0。10。

反正就不同的权嘛,就时间在这啊,好但当那个呢这个在三维中呢,基本上大家对这个问题呢没什么太多的研究,因为三维啊只要两个形状位置啊,中间差值也还不错啊啊那那就是差值问题呢研究的比较少,也有哈。

二维中这个差值这个路径问题研究比较多一点,因为你看到如果a因为如果所谓两个两个朝向是一样,差组没文,但是如果朝向反的话,中间会萎缩是吧,尾宽的萎缩啊,这个人的跳舞的时候,这个胳膊啊就会萎缩。

还有这个呃这个公鸡在吃面的时候,这个脖子会会啊,所以才就要就要采用一些这个非线性插值方法啊,早年在研究这个二维形容差值之后啊,就是这93年一篇文章也比较有名啊,谢谢宝贝。

这个这就是也是发明天量条的那个cbg好,他当时就是不是差的顶点插什么插值这些多边形的边长和夹角啊,就这样一个思想啊,他把他认为在边长和夹角就是这个多边形的一个内在变量。

你插着这些边长和夹角就能插得出好的形状啊,那么这个是差值复利系数啊,我不展开啊,这个是当时我知道一个学生做的是插着这个小波分解的系数啊,就是你对这个形状进行插值,我是插着这个简单形状。

然后小波系数也进行插值啊,差值股价啊,就股价以及它的那个股价,股价有了以后,那个边界点跟股价的关系会差值啊,那么这个呢把这个差值问题,这个函数呢把它分解成定义在两个compatible mac里面啊。

这是平面的222个网格,那么就一对应他们什么,他们就就觉得这个三角形和三角形之间的差值呢,我要使劲测个三角形的,就是这个看到这些一个旋旋转分量跟深度分量的一个差值,所以它不是差值,顶点是差值。

这个三角形的一个仿真变换,反反变分解成一个旋转加平移,所以我中间三角形针又是旋差值,像四层中间中间的这个形状呢就相对会比较好一点,它有你插入完以后,这个这纹理就得到了吗。

就是相对的三角形的纹理的差值不同,评价这些也是我早年的一篇文章,这个也是小工作了啊,我不不不张开好,另外一种踏实的方法呢是什么,就是可以把它升为声明到思维空间啊。

我问你上节课刚刚在讲到那个曲面重建重建呢,比如说那个重建有一种是ct是吧啊,我们每个截截面啊,把这个是截面零,这是截面一,你可以把它看成是t等于零,t等于一,不是相当于什么嗯,你是你是你是全面重建。

是不是构造一个呃这个差值函数啊,在t t等于零的时候,t t可以把它回来看,看的是这个坐标轴是吧,这是xy,那么t等于一的时候,这一圈是取本身就是以函数等于零的t方,外面等于一是吧,里面等于零。

这也一样,所以它差值除于一个高位函数,使得在边界处呢多等于零,这样的话呢这个曲面预算设置出来以后,我中间取一个t等于t00。50。1,这句啊取出截面就是这些形状,所以隐函数差值当啊也是效果不错的。

但这个它就不需要去找找对应关系了,它除出一个隐函数啊,对j等于零和趋近于一的这个形状,边界都等于零,里面出等于一,外面都等于-1啊,或者啊啊这个这个用隐函数差值差这个高别函数。

然后求它的t从0~1的不同的横截面的等值啊,就可以得到中间形状,所以你可以想想这个函数求出来以后是不是相当于一个切,从上往往往往下变化,就是一个连续变化过程了是吧。

因为如果这个引线函数是一个连续函数的话,这个横截面就是连接有变化的啊,这个距离场差值啊,差这两个形状啊,因为上节课我们讲过距离场怎么来重建这个文章。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

下一步就能看懂啊,就是构建两个距离场,然后中间差值啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个999年这本人也一样啊,只不过他是用rbf来构造这个差值函数啊,所以所以你们以前实现了rpf啊,这个呃那些方法与理解这个变形或者win的工作就能理解啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那当时啊他可以模仿任何一个拓扑的形状是吧,但是隐藏出差值的一个问题呢,在中间呢中间的拓扑是不可控制的,它完全是由那个视维的那个隐函数的等于等值面来得到的,是吧啊这个这是零整层面,这是一整层面。

中间这个可能是00。4,那么这个整数面是啥,你只有重现出出出它的的等值面,才知道这个形状就不可啊,并且隐函数有方法有有问题呢,它可能会多出一些这个handle,想像这里这个多一点是吧。

这个函数性质如果不好的话。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

也会出现很多问题,好,那么这个pmf呢也是有人提出来,就是说它可以插值123啊,那么中间中间这个怎么差值呢,当然就是三个点的中心坐标了啊,这个这个只是概念,那么你n个形状就是就是重力坐标来差值就行了吗。

也差不多,我们做个今天内容不少哈,我们系统讲了一个这个形状编辑,还有啊西藏差值,还有中间还有shy modern早年的cad啊啊我就不详细去回顾大家啊,反正看一下课件,上次嗯上节课我在末尾的时候。

我也我也提到这个观点,就是我们的三维内容生成啊,无论是扫描的这种你已有的物体还是这种交互式的构建,仍然这个模型则生成是一个非常难的问题啊,你可以想想我一般的专业用户都要学很多年是吧,你要才能建得好。

一般像像这个初初学者要建个模型还是比较难的啊,虽然研究工作啊,工这个不同的研究人员,你要发明了不同的方法,都希望在减少用户的层啊,就像今天所讲的这些那些方法一样的,通过点啊线啊k局来交互啊。

但是毕竟是三维这个这个多了个维度,而我们的屏幕是二维的是吧,所以它的交互性能不如图像那么直观啊,还有空间想象能力等等啊,所以还是很难的问题啊,我也我也说的是相对于呃仿真跟那个渲染。

因为它们的方程是明确的,但我们这个三维的模型的交互啊,这些这个形状生成呢整整还是一个非常大的挑战。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好一些挑战呢这个如果同学们以未来详细找,那如果是呃做可以找找一些比较好的题目,就是这些比较有挑战的一些模型,比如说这种啊结构啊,泡沫,还有这种v v结构啊,因为这种结构的结构模型呢。

就现在的卖血啊或者是rose啊,呃样条都没法表达啊,就可能要用一些啊特殊的这个这个这个几何数学表达啊,但是这什么什么特殊呢,大家都在找找这个不同的表达方法啊,啊这个跟那个实际的一些材料一相关。

因为因为还有一些材料,还有一些物体材料不同的地方是不一样的,所以它要有这种js各项硬性的这样一些空间表达啊,可以表达这个材料的特性啊,材料的一些密度啊等等啊,那么这些是跟制造相关啊。

因为现在3d打印这个成本比而低嘛,所以很多演艺工作者可以用3d打印来验证这样一些这个建模的,这个效果啊,结果好嗯,当然这个要讲讲起来也好,很多东西可以讲啊。

呃我也我们也我们也是在这方面做了有78年的一些积累啊,以后有机会也可以来跟大家分享分享好关这个东西还是不少啊,所以从上次的重建到这次的建模啊,这个呃运动还是蛮很多的,因为才两两次课,也总共三小时讲完。

所以所以也是种马观花啊,给大家一些这种新的一些呃这个建建模的手段的一些介绍,没有详细展开,那么来如果有高级课程,或者是自己根据这些课件的一些指引啊,自己去挖掘一些文章,自己去看好。

那么今天的课程就到这里结束好,我看看平台上有没有提问,时间也不找那个那个如果有提问的话,可以在这群里面进行提问好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我们呃呃这个课上到这呢,建模的主要的这个内容就上完了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

后面还有部分内容我还是想给大家分享啊,所以后面还有如果下节课如果能全部讲完啊,可能就下次下周就结束掉,如果中期还讲不完,我就再讲一次啊,就16次好吧,然后就取决于下周的那个啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个我们讲的速度好,那么这个因为后面我还有一些cup的一些项目。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

微信群里面进行提问,那么今天就到这里好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

GAMES102:几何建模与处理 - P15:纹理合成 形状分析 课程结语 - GAMES-Webinar - BV1NA411E7Yr

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好那个同学们啊,晚上好啊,今天是我们game 102课程的最后一节啊,那么跟以前一样。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们先看一下我们这个课程最后一次作业啊,作业时的一个情况啊,总体上交作业的同学还是不错的啊,同学的一些结果啊,这个同学是实现了那个就是显示方法啊,cross换算法,当然算法也出现一些小的问题。

像比如这里一个连接应该是发生错误啊,但总体上大部分还是对的啊,那么这个顶点加密以后呢,这个就会避免这种错误。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这是另外一个同学也是重建,用的是火诵方法,普通方法是一种隐私的方法是吧,那么他需要点的法向,所以如果这个法向如果发生错误的话,像这个这个地方就容易出现这个重建结果是错误的,那么出现这种呃异常的现象。

他们大部分情况都是因为法向相反啊,反调了啊,所以啊但不能量这个因为毕竟是昨夜,所以同学们可能没有太多时间去检查这里的一些反向的正确性,因此呢这个反正这个结果有点点错误。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

没关系啊,还还是不错的啊,那么这个是一个同学啊,录了个视频大家看一下啊,首先这是点云,那么用普通方法嗯,它调用了一个machine cube的算法。

macube算法也可以看到它那个重建网格都都那个跟那个grade相关是吧,这这这个网格一看就知道是mc cube所重建的啊,这是把这个线框去掉啊,这个重新重建结果还是不错啊。

因为这个数据质量可能还是不错。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后反向都是正确的,那么这是另外一位同学呃。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一个比较完整的演示啊,它有两种方法,一个r p f就是一个都是隐藏方法啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

只不过是r b f g函数拟合,还还是个普通拟合,可以看到他在菜单里面可以去选择啊,不同的方法,以及可以对这个距离场进行自适应的跑分啊,算出那个一些距离值,然后后面但调用这个是应该是rbf的结果。

好看后面他切换到了啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

破松啊,方法啊可以看到那个顶点,如果不是特别密的话呢,它的重新质量啊也是不是特别好啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

也发生一些一些小小的问题,但这个就留在于课后。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你们大概大概同学们呃自己去检查,好好嘞,那么呃我们同样也会把最后一次作业的报告和代码,和优秀同学的这个报告代码啊,挂在网上供大家参考。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好好,那我们今天这次课程的东西还是比较多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们继续来讲完我们今天的这个这个课程的一些最后的部分的内容,那么首先嗯讲一下这个纹理合成嗯。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

合理课程,那么我们回顾一下我们这节课,特别是前几次啊,从曲面重建到全面建模是吧,重建呢是物体是存在的啊,我们是通过各种设备啊,无人图片还是激光扫描仪,还是照片还是结构光,然后是把这个点给测测出来。

然后再利用一些算法把它重现出一个三维模型,那么建模呢是通过用户交互去做设计是吧啊,是通过各种各样的一些工具啊,拖拉啊,还有一些这个交互的手段,所以重建出模型,那么这些模型你可以看到这个猫头鹰。

还有这样一个小动物,这个模这个模型都是只有顶点数据,但是没有颜色,所以没有颜色的这个曲面的看起来就不真实,所以我们还要给它贴上一个纹理。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

让它看起来更真实一点,所以怎么去给这个模型赋予纹理,好像中间这个兔子啊是没有纹理的啊,但是如果你把它附上每个顶点或者每个面给它附上顶点以后呢,可以发现它这个看起来就很真实啊,就像一个真实的这个兔子。

毛发有毛发的纹理啊,眼睛有眼睛纹理是不一样的颜色,当然你也可以赋予下上下面三行啊,下面一行的三个模型一样赋予其他的纹理,可以看出这个曲面的一些心态,所以在证实着我们的应用中,这个光有几何数据不行。

还需要有一些纹理颜色的信息。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么复议纹理呢有有这种手段啊,如果是重建,那么你这个采集物体本身就就是图片啊啊物体本身就带带颜色,所以你只要用采集它的那个rgb这个颜色,就把它附上这个结构模型上面,就可以得到带有纹理的是吧。

所以它是因为物体是存在的,你只要把这个物体表面的颜色把它采集下来,把它对应的顶点附上颜色,就能够产生纹理,但是对于一般这个设计出来的模型呢,它是物体是不存在的,是靠人手工设计出来。

所以它的纹理后期呢有一些这个啊也是要交互手段啊,你可以参考一张图片,然后通过图片跟这个参数化的一些结果啊,把它附上颜色啊,可以也可以通过手工去直接用一些画笔在这个平面也好,还是这个曲面唱也好。

直接去画它的颜色啊,这是一种啊人工这个赋予纹理的一种手段啊,特别是在一些行业游戏啊,这个这个属于美工这样一个角色啊,还有既美技术,美工这个角色去做的事情,所以这个要给一个模型附上颜色。

这个模型才会更生动啊,好今天呢我们不去讲那个怎么去画真实纹理啊,我们来看如果给一个模型附上这样一个文叫纹理合成,假设我们已经有一有一个小的纹理,这样一个小片,我能不能把这个小片啊。

把它铺满到一个结合模型上面啊,这样的话也能够让这个曲面赋予纹理啊,那这个这也很多很多应用啊,那么这个呢就叫纹理合成,比如说我有一个纹理的一个样本sample好,那么我通过这个样本呢。

能不能把这个样本呢把它贴到这个几何数据上面,注意啊,我不是一贴一这么一小块,我可能很多很多小块的这个重重叠,所以它是一个这个铺满的过程啊,简单一点,你可以把它看到一个小小的sample。

把它一块块贴贴满整个曲面,当然中间有好多缝啊,这些需要解决啊,这就是纹理合成所要解决的问题啊,我要我要把它填满,但又不能看出结果中有太多的啊这个artifacts这个这个这个缝啊,不连续的现象。

那么我们如果先不看是二三维,我们来看二维,二维就是这样一个问题啊,我给一个小的这个样本sample啊,然后我给一个大的区域啊,这个区域比这个原始样本的大小。

只要大好问我怎么样来生成或叫sc合成一张新的纹理啊,这纹理呢看起来呢哎看起来跟这个纹理像,但是呢可能又不是完全的重复啊,那么纹理合成就是想做这个事,所以说物理方程的这个一个定义好。

给一个这个样本的纹理i啊,这里i那么我们的目标呢就是合成一张大的纹理j啊,这个键呢看起来像这个i但是呢又不是它的简单的重复,所以他这里就是这这个这个度量很难度量,什么叫看起来像。

所以这里面这个数量很重要是吧,然后它又不是简单的平铺啊,简单的重复啊,那么这个就带有一定的随机性啊,对于这个问题呢,呃在啊20 20多年前就开始研究比较热门啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因为它比较有用好我们看一下用途在哪呢,好,首先当然是给这个枯燥的,光溜溜的这个曲面赋予这样一些丰富的纹理啊,让它看起来更更形象啊,还有呢你纹理合成,你比如说这个地方是个地毯,左边这张图啊。

地毯我想把它换成另外一张地毯的颜色啊,我我我是不是可以把这个地产的这个这一块把它去掉,然后用那个小纹理去把它找出来,还有右下角这个在这里有一张图片,有个成人成年人跟一个小孩,我希望这个成年人把它抠掉。

磕了以后,这是不是一个空白的区域,就是这这一块,那么这块区域我能不能用背景,然后取一小块小块的那个样本,然后用这个样本呢长出来长填充这样一个成人年啊,成年人所占的区域啊,就这样的话呢就可以啊。

p把把这个空洞给它填掉啊,所以这个我用现有的这个图像的小的sample去合成,填充那些这个位置区域,或者做一些洞啊,这这个就是纹理合成的一个非常重要的应用啊,如果大家用过ps,就是photoshop。

就是它里面有一个叫chrome brush啊,就是就是克隆比啊,它就是可以把别的地方的这个这个这个颜色啊或者纹理啊,把它克隆到你交互的这个地方来啊,所以这也是一种简单的拷贝。

但是呢文理课程不仅仅是要拷贝,而且他要是带有一定的变化,这就是这个问题的一些困难性好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那我们看首先先看一下什么叫做纹理好,我们来看纹理,我们一听纹理呢可能就是还是跟一般的图像啊,图像我们叫image,文理叫tcture,就是既然用不同的词,可能还是有不一样的含义,对吧好。

那么我们指纹理呢,指纹理呢它是一种啊物体的表表表现啊,比如说主子的木纹呢强啊,还有草地这种啊,这种带有重复性的,还有这种人啊,那种人不能严格算意义上的这个纹理,但是呢因为它有很多重复。

所以文理首先一个特征呢它有很多重复,那么这个什么重复是怎么刻画。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我们等一下再来解释好,那我们来看一下image and texture的区别好如果是一张纹理,先看右边,我任意在两个地方取一个同等大小的框,把他们两个框给拿出来,看这个b在这这个b2 在这是吧。

哎我肉眼看呢觉得他们两个差不多都是同同一个东西啊,同或者同一种纹理啊,那么这种属性的这个图像啊,就是各个地方都差不多的这样一个表现,那么这个叫纹理啊,因为它这个具有一定的这个这个重复相似性啊。

有有点像分型啊,他分析就有这个scale这变化啊,这里不一定有好图像呢,我我也是取不同的地方的框,把它拿拿下来,他能落点一看,显然是不不一样的,不一样的图片是吧,它们相似性没有,所以这个叫图像。

所以图像就是没有太多重复性,纹理呢是具有这种重复性的纹理啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个图像好,那么下面这些基本上啊大家用刚才那个规则来判断,基本上都可以符合刚才的那那个描述,对啊,刚才那个描述而已,不是定义,因为定义的话是要非常精确的啊,这个看起来像什么叫同一类。

这里都没有严格的去数学描述,但没关系,后面我们会有呃,呃这个相对的方法好,我们来看下面这些图片,你看任取一个小框是吧,这里因为这些小小伙子这个都重复了是吧,像这个辣椒啊,你你认识一个框。

大家都会认为它是个文字这样一个啊,我这个图像,所以也可以认为是文理,像像这个中间这张上面这一行啊,这个有点像噪声啊,随便取取一小块,虽然他们两两个小框啊,看起来而不是完全一致。

但是呢我们肉眼看起来视觉上看起来还是相似的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

所以这个也算美女好,那么这个纹理这个在前面学唱的话的时候,大家知道这个你要给给模型贴上纹理啊,是一个很很很重要的一个过程是吧,这个在gpu中我们读个纹理,直接直接给纹理坐标一负就可以把纹理贴上去。

自然是在一个动态管理,也是一个很重要的技术,就是可以模拟一些水面啊,这是很多水波,你如果用物理方法去算这个水波的,这个这个表面计算量是非常消耗这个这个计算资源的。

那么我们有一种技巧就可以用多张这个不同的纹理啊,然后通过动态纹理的绘制切换,就可以表现出这个水水波荡漾的过程,好这个我在这里稍微提一下,那么这种动态管理呢也是在这个为了为了节约这个计算资源。

我预存一些算好的这样一些纹理,然后让他让他们在随着时间变化就产生出这样一个动画啊,有点像我们的那个g i f文件技术文件,它就是动画文件,它本质上是存在这个图像的序列,然后不断的更新就形成动画啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好纹理呢有有不同的这个属性啊,这个分类啊分类呢一般如果你们去做纹理印啊,这个合成的话,就会看到一些词啊,这个叫做iptropical啊,就是各项同性,就是呃基本上看起来呢各个方向差不多。

这个叫各项异性啊,那么这种呢介于两者之间是吧,还有还有这种纹理叫叫叫有重复性,像砖头一块一块重复的,像这个叫随机的啊,就是从根本看不出重复的啊,也有介于中间的啊,所以这些不同的纹理性质呢。

它这个合成的方法会有略啊差别,好那么我们看一下二维的纹理合成啊,我们先把二维搞明白,那三维的话就就容易理解啊,好那么最简单的纹理合成,就像我们家里做啊这个装修一样的,在墙上铺瓷砖或者在地上铺木板。

我就一个个扑扑上去啊,实际是这里右边这张图刚好是左边这张图的3x3,你可以看到是刚好是三块九块1233行三列好,那么这种你说是不是刚好因为这个纹理比较比较特殊,刚好左边与右边呢可以完全连续拼接。

上边和下边也可以完全拼接,你就会铺成这样,至少看不出有很明显的裂缝,但这个文明大家有没有仔细看一下啊,大家有没有觉得怪怪的是吧,因为他123它还有很强的重复的特征,所以呢这个呢没有随机性啊。

就是太规则了啊,所以这个也不是文理合成期望追求的目标啊,那么因为它有这个repeat pattern,所以这个人员对这种特征呢是比较明显啊,比较敏感的好,我们更希望的是什么呢。

就是不不是说这种这种terrible texture啊,terrible是指它给平铺并且无缝的好,那当然这个也有可能给到纹理,我可以去造出这样一个terrible的tt,左右上下都可以拼拼成无缝了啊。

就这种好,我们更希望呢它有一定的随机啊,不是完全的平铺,但是呢哎看起来我还是认为这个纹理是这个啊,这个原始样样本的这个纹理啊,当然我也希望希望要高效一点好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这几个例子中间这个小块呢是一个纹理的这个样本,那这个六个大的都是合成出来的,但是都不一样啊,可以看到嗯,从视觉效果来看的话,我们都能接受啊,在这个结果都可以算到差的一个合理的一个文理合成的结果对吧。

所以所以这个纹理合成本身就是没有无解啊,实际上是很多算法都是没有意见,像曲面重建一样啊,这个怎么连这个插插一条边做一下边这个重视啊,没什么关系好,同样这里纹理合成呢也是一样啊。

就是这个这个结果都可都是什么,都是acceptable,可接受的都可用啊,就可以啊,所以这个算法肯定是带有一定的这种随机性的啊,但是呢这六张图都有个通用特点,无论谁来看,都认为它是这张纹理的啊。

这种啊一样的这个视觉效果对吧,小孩子看也是一样好,那么纹理合成的难度就在于就是说你怎么去捕捉,或者叫描述这个纹理的这种所谓的看起来像因为这种东西,这个这个从数学上来讲,它不是一个精确的定义。

它也它只是个描述啊,这种描述是挺难量化的啊,什么叫看起来像对吧,所以怎么去建模啊,我们做一个问题的时候,就是你如果你能把它建模出来,成一个量化的东西,你就可以通过计算来做。

如果你不可量化这个机会就非常难的做这这种这种计算啊,所以我们第一步就要去怎么去解决这个量化的问题,那么我们今天呢呃这个我们的合成这个呃20年前还是比较热门的哈,就是研究比较透彻。

而我们我们先天只是讲一种就基于这种啊这个样本的啊,叫叫sample bee,你要example based的这个技术,比如说我输入是上小小的样本输出,用户给定的一个大小啊区域。

我要把它生成出来一个纹理啊,那么我们今天主要讲两个方法,一个叫参数化方法,一个叫非参数参数方式,方法呢就是对这个纹理进行一个呃描述,进行一个数学模型建构建。

然后这个构建呢主要是用一个函数去描述这样一个啊纹理片,纹理的这个图像,然后再再把这个函数呢把它把它apply到这个区域,就生成这张,那么非常的话的话呢,就通过一些从这里面去拷贝一些这个这个像素啊。

或者是一些块,然后长成一个这样,然后中间过程中呢让他产生一些这种啊随机随机现象啊,那么我们分别来看这两种方法,我们先来看第一种po magic啊,这个参数化方法,这方法呢这个呃在早年实际上是。

现在仍然还可以有很多不同的这个策略,就是说我对这个纹理啊,嗯我这里只是讲其中一种啊,你可以看到它就对着纹理生成一个金字塔,就是一个做分辨率。

然后每个做配率呢它又用用一个一个一个函数去提取它的future啊,我们这个一个影射,上次就是一个隐私引申成一个在一个非非space啊,然后这个face face呢我就作为这张纹理的一个特征。

然后呢再通过函数逆把它把它把它生成这样一个东西啊,生成再还原成一个原始纹理好,那么你可以看看这个这个就是一个眼睛的一个影射啊,从把它隐藏在一个高位空间空间呢,在中国影射呢就映射回原来图像啊。

就有点像现在的一个呃这个漏斗型的这样一个ae啊,跟vi啊,好,那么呃具体这个隐身怎么构造呢,有不同方法,有些人可能中间采用一些这个卷积或者产权滤波,把它提取一些这个这个这个中间的特征,然后再去再去做啊。

那么呃这个这个这个颜色也一样啊,好那么大概都是这这种方法,就是通过希望建立一个数学模型去描述这样一个纹理,所表达的一个函数,这个函数函数有了有了以后,就这个影射有了以后。

所以它的过程像95年还有20多年前就有这种方法啊,这个当然你用mari resolution这个方法呢就是可以捕捉不同大小的啊,这里就是你可以分享,如果你同样用3x3,你在这个分辨率用3x3。

在这个分辨率用3x3抓的特征是不一样的,在小的这分辨率用3x3相当于加大分辨率啊,是抓这是什么,是6x6了啊,所以在更小的整数分辨率转这个用3x3呢可以抓更大的特征。

所以一般做这种纹理啊或者图像处理的时候,都会在不同的分辨率去抓这个特征啊,好所以可以看到先构建一个多分辨率的一个金字塔,然后呢不断的去去match它的,这里这个算法比较简单。

是用了他的那个history gram,就是这个直方图,直方图大家应该清楚啊,就是颜色啊这样一个分布啊,就他就只是只是mac这个分布,然后然后不断的去去去迭代啊,你可以看到就可以长成这样一些生成啊。

就是啊这样一些这个这个结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

他说当然这个这个方法比较比较早啊,这个方法也比较简单,他用直方图转图只是体现了这个颜色的分布,并没有很好的刻画这些特征,所以他有的时候长出来或者合成合成出来,这个结果是是是效果不好的好。

那我们重重点看第二类方法叫非参数化的,这个方法好,非常方便的,这个一个非常啊它的思想非常简单,它呢也不用函数去描述这个纹理啊,他不用函数,它呢我就什么我就从原始验样本啊去去拷贝啊。

你那个那个那个局部看起来像嘛,我就只要拷贝,然后拷贝过程中呢,我不我不是从呃呃同一个地方考,我是可以发生一些随机现象啊,在考,那么这样一个过程呢,也可以从数学上把它解释成一个什么呢,解释成一个马可夫厂。

也就是说我拷贝了这一块过来,它周边的这些像像素啊,颜色呢就什么就不能乱拷贝了,不能随便拷贝了,为什么我要根据这个这个这一块的这个特征,去那个样本里面去搜最相似的这个周边的那款。

所以如果你把它看成这个随机过程,比如说我这一块的这个东西给定以后,它周边的一些像素啊,就是什么,就是个条件概率啊,它不是由所有步骤做决定,它只要根据周边甚至什么,所以他这个是一个这样的思想。

当然马可波场这是一个解释啊,那么这个就是一个随机是随机厂啊,比如说经常我们用这样一个呃呃那个文字合成来比喻哈,下面还有一个有英文啊,看大家看到哈,we need的好,当你写了唯一的时候。

need后面最大概率是什么对吧,那个因为每个单词背后啊,它如果统计上面你可以去去去去算一个概率,那么啊只要我们啊这个这个四级的英语就知道哈,we need it后面肯定是to,要么就是一个名词对吧。

如果是呃这个这个这个后面接动词的话,就很to是吧,好to什么呢,to后面又可能接个动词对吧,那么这个动词就很多,可能如果诶我知道是个it啊,那那么it后面你这个这个词又少了很多,比如说e啊。

kk还是eat啊,这个其他的都bread还是什么东西好好,所以这呢就是一个马可夫产的概念,就是我后面那个单词呢只是取决于前面的若干个单词啊,它是个是个比较这个领域的这样一个概率,现象好。

那么基于这样这样一个解释,那我们看假设右边这一块啊,这几块呢这白的这个地方都是不知道的纹理,这一块呢是知道纹理好,红红的这个像素呢是还不知道的颜色,那么我就拷贝这样一个红框里面的以p为中心这样一个大小。

这个这一块的纹理是不是都知道了,所以呢我用这块纹理呢去去里面搜去比对,比对一个最像的那个那个快,如果是这个块,它又把这个块的那那那个颜色把它拷贝过来,是不是就增加了一个像素的这个颜色了,好以此类推。

我下一个旁边的位置,像素也用这种方法去同样的一个大小,然后去里面去找好好,所以这这就是一个非常简单的这个啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

逐像素的一个啊这个纹理合成方法啊,我们来看一下好这个左边是一个呃sample啊,是是一个样本,那假设右边已经合成到了这个地方,那么这个像素呢像素是比较小的,在这里啊,好这个像素是未知的啊。

就就这个这个方像素,我用这个像素周边这个这个非矩形,但是类似于矩形是实际上是更更是一个我们把它叫l l型,这个这个区域颜色知道的对吧,那么我用这个矩形的颜色呢,到这里就全部比对一遍。

那每个地方我就得比比那个比对一遍好,这跟这个l框l型框最相称的那个那个地方在哪,假设是在这啊,我就把这个颜色给它拷贝过来好就长了一个像素好,以以此类推,我下个像素也可以涨,是涨完一行我也涨。

涨下一行就可以一个一个像素的去去去找这里最相似的这个像素,就可以把它拷贝完啊,所以这就是最简单的一个叫pixel base的那个这个方法啊,这个方法呃我先不往下讲的话,大家来思考一下。

这里面计算量最大的是什么,对吧,最大的就是来来比比对这个这个红红框啊,就是这个红框的颜色跟这里这里这里所有的这个颜色要要进行一个啊,这个度量的最相似的度量是吧,假设度量啊我们取最简单的就是l2 范数。

就是逐像素的这个啊这个差异的平方和,那么这就是一个检索问题是吧,所以这个是非常重要的一个技巧,就是要对在这里的这个向量,就是这些像素的这个值啊,把它进行一个组织啊,用刺杀猪啊,八叉树组织起来。

这样子搜索就比较快啊,我这里不提,大家如果要做这方面的时候。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

自然就会看到就会想到这种技巧好,这就是这个文文你这个合成的一个方法啊,那么这里呢有一个这个框,就是那个相似比较的那个框大小,你框的太小,实际上就是这个蓝色的就合成质量就会低啊,为什么。

因为这里有个有个有个本质的一个东西,你可以看到这个是绿色框合得好一点,但是这个pattern出不来哎,红色呢哎慢慢好了,如果如果到这个这个品红的这样一个框呢,这个合成出来质量就非常好,因为呢不同的话呢。

它抓抓的那个领域不一样,领域呢像像这样一个纹理,这个这个样本呢它两个圈圈之间呢是一个距离,所以品红这个呢是能抓住他们之间距离,这时候呢他这个合成的就能就能抓得住这个结构啊。

所以这个这个参数呢也对合成结果是有影响的,对这个取决于这个样本中的这些pattern的这样一些大小,这些这些实现了装盘,就大家试试就可以知道这些现象嗯。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么可以看到这个样本下面这一行啊,这个砖头,那么那么你你这个如果这个比对的这个窗口比较小,这个合成出来虽然是以结构,好像也是一块一块的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

但是没有砖头的现象啊,这个已经有了一点点,再加大这个大小呢就会更好啊,好这是其他的一些结果,可以看到这个只要只要这个窗口大小合适,可能像这种纹理窗口不要太大,因为它没有太多的结构。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

像这种纹理的结构要大一点,要不然要不然就抓不住这个结构,就像就像这里所出现的有些快大一块小。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

而不是这么均匀好,那么刚才那个算法这个很容易理解是吧,但是很慢,因为什么他每个像素主要是错一遍,那么在这个过了几年呢,这个2002年啊,就是把这个算法推到了这个快。

就是一块呢可以拷贝很多很多很多像素过来啊,那么这个可以快过来以后呢,这个这个过来以后呢,我就可以用周边的这样一个区域也去比对,不就可以马上就拷贝下一块嘛是吧,所以你可以看到这张示意图,假设这一块有了。

我用这个这个这个小的是个矩形的颜色去找一个相似形,最快最相似的块在这,然后最后把这一块的拷贝出来啊,嗯这这这两部分是重叠的吗,好这是比较相似的,所以一块一块就可以很很快速的一次性拷贝多个箱子过来。

而不是一个像素,一个像素,我们想象一下,假设这块是10x10,是不是它一下子就拷贝了100个像素过来啊,速度就比刚才就快了100倍是吧,所以可以快好几个数量级啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这就是基于快的这个这个方法好,我们同样我呢我们来解释一下,假设我们哎合成的上面这个纹理好,那么那么那么这一块我不知道是吧,然后我我那个找他的一个领域是这个领域,然后我用这个领域去这里找啊,找完以后呢。

找一个最相似的领域啊,讲了讲到这个领域,就把这一块全部给它拷贝过来啊,那么这就完成了一次这个这个快拷贝,下下一层呢也同样啊,当然这里有一个小细节,就是两块重合在一起呢,它不完全一致,我找一条最小的歌缝。

使得他们那个呃这个人这个呢是取得这里的一块,这个呢是取得新的那一块,但是这个误差是最最小啊,这样的话看起来效果会会更光滑好,那么这里考完一盘以后,我就再考别的款,就就一块一块考啊,那就叫phic cs。

那么这个paypse sse有两个好处,一个是啊质量会更高,因为它一块块考啊,这个不像逐项做烤,容易合成,碎掉了啊,这个或者糊掉了它因为每一块都是原石文理拿过来的,拷过来的,所以它这个清楚啊。

也比较清晰,第二个呢它也比较快,因为他一块块考,刚才我解释了一块,如果10x10的快,那么一下子就100个箱子过来是吧,比一个像素,一个像素合成,当然快了,刚才我提提提出下一个歌分问题。

个问题呢我这里稍微解稍微用用个图来解释一下,就是b和b2 块逼着这个这一块和b2 的这块比较比较相相似了对吧,因为我们我们是拿拿这个边缘去匹配嘛是吧,就是这个但是他们又不完全一致,所以还是有一个误差。

phone是什么呢,然后这边呢是用b e的颜色,这边呢是用b2 的颜色,但这个phone的误差呢我尽量的尽量小,甚至等于零,这是有可能的吧,因为我从三代找一条路径,这就是典型的一个动态规划问题啊。

当然如果从图论来讲的话,它也是个啊典型的叫做最小这个流记最大流最最小值问题啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那就是这里有个形象的啊,那么这两块呢它们不完全等于零,但是呢我他们的差,它它们的差是这个图像啊,这个图像不完全等于零,因为如果全是黑的话,表示这两个是完全一致对吧,但是呢我可以找到一条缝。

其实这个缝呢尽量的都走黑的黑的地方,嘿嘿嘿,a地方是不是相当于这个缝走的地方都是误差等于零,这样的话就看起来这个视觉效果呢就就会更好一点啊,那么这个区这一块,这个区这一块,然后把它拼起来啊。

就达到无缝的效果啊,你就理解上就是把这两块的误差图上面,找一个这个这个误差最小的一个缝就行了,好这个叫叫sing啊,就是实际是就是啊gdht啊,最大流最小个的问题啊,图论里面的一个非常经典的问题。

如果同学们做过那个图像处理,这grab cut。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个啊是是必须要非常熟的好,那么这种算法呢也非常适合去去做这种自然图像,比如说我想把把这个图图图片把它合成到到这来,你只要把它拷贝过来以后呢,找一个最小误差的曲线。

反正就就这个就肉眼就看不出他们之间的差别好,还有啊你可以看到可以把这一块把它拷了,拷贝到这来,只要只要这条缝是看不出差别,就能把两个图片进行合成。

那么这种方法这个呃后面就是十几年前有当时非常热的一个topic字,叫做啊图像缩放,你这缩放可以叫some coin,就是我对一个图像进行伸缩啊,哎我我比如说这条竖直的线就是一条什么。

比如比如说贴住或者是两边差距比较小的线,我把这条线这条线呢占一个像素宽度,每一行都占一个像素是吧,然后你把把这个红色的这个像素把它硬拿掉,左右一拼就完美的就拼成一个啊列数少一个像素的图片对吧。

然后你只要这个差异看不出来这个这个图片是不是少了少了一个对吧,然后你重复操作啊,你你你操作100次,这个图像就少了,列就少了少了100个像素啊,就这样的话可以达到啊这个缩放啊,所以这个缩放的原理。

就是说我这条线呢肯定不会是经过这种明显特征的物体的地方,因为这条线经过这种方法,它的误差是非常大的,就是两边的能量是差别是非常大的,所以它一般会走什么,走那些,这真不是很明显的地方啊。

就是当年这种叫做content aware。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这种叫做基于内容的说法啊,这里是一张图,这个是上面这张是原图啊,左下角就是用刚才那个想法,你可以看到这个线呢就就会保持这样一些比较明显特征的地方,就会得到这个结果,如果你是简简单的这个scaling啊。

你可以看到是这个结果,这个这些地方呢就扭曲挤压得很厉害,如果只是cropping的话,会把这个地方呢三给他截掉是吧,所以这种sim卡这种技术呢基于内容的国家,内容敏感的这种说说话呢就能就既能保留特征。

又能很好的呃达到这个这个图像说过的样子啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么我我这里就不详细展开啊,啊现在这个这个topic的也是年龄比较比较多了,这个呃最近文章也不多啊,但是要大家清楚曾经很火的一种技术,可以把这个基础内容来做缩放呃,纹理这个刚才讲完基本原理。

我们现在看看这个还有很多其他其他方法,像这个tt,因为这个纹理合成最怕就是把这个pattern呢就搞搞碎掉了是吧,所以呢才103年有篇文章就算是微软啊,这个呃呃这个研究研究院的做的就是唉我呢去手工。

或者是通过一些视觉方法去判断里面有一些这种python,就我看到呢就把它叫叫做这个tag,就是你把它理解成是telement纹理的一些元素,如果我在合成过程中呢,能把这个这个这个tag的结构给它保持住。

那么那么对应的就是颜色拷贝过来是吧,所以你这个结构保持住的话呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

它合成的这样一个纹理就不会不会碎掉啊,这就这就是当时那个呃这个这个太痛的方法去合成,那么他后面还有不同的这个人,从各个角度啊,像什么什么菲谢麦map,本质上也是在在在在寻求这些纹理的一些特征。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那个把车灯保持住,合成结果就不会不会碎掉,也不会烂烂掉啊,呃呃纹理合成当时做的还有好多是做这种什么local size control,因为它的这个大小在变大,可以产生这种光滑过渡的这种纹理。

这个这个这个伸缩的样子,这个结果啊还可以呢控制这个方向,哎我的纹理合成的时候呢,我里面不是从左到右,那么合成过程是不是可以看的是它沿着一个向量场,只是在和顺序在合成是吧,所以你只要生成这种斜的呀。

这种非规则的这样一些加工厂,我在合成过程中就能找产生出这种不同的朝向的一些纹理结果啊,就是合成过程呢是沿着这个当场背后有个向量场啊来合成啊,这样的话呢就就可以产生分布变化多端的一些这种纹理。

结果就通过这样一些手段啊,一些伸缩呀,一些方向来控制合成结果好,二维讲明白了,那么我们看三维三维这个过程啊,如果二维讲明白三维中心的三,只要类比把这个类比想明白,你上面怎么做,就就就应该不难好。

我们来看一下啊,这个这是个类比啊,就是阿维在上面涨这个平民区涨对吧,涨的过程中呢可以按不同的方向啊,这个大小就合成是吧,那么我们这里是不是也一样,我可以把这个纹理啊在这个曲面上,也在曲面上去找对吧。

最前面呢如果有一定的这个朝向的这样一个定义,比如说向量场,那么我我这个有点像这篇文章的好,那么你只要有个向量场引导,我就可以不断的去扑过去,对吧啊,然后进行合成啊啊这这是一种思路,还有没有别的思路。

有啊是吧,我可以把这个曲面把它剪开来,把它参数化变成一张平面的这样一个定义域是吧,在定义上面去用平面方法去做合成是吧,但是呢这种但是这种方法呢就点击比较明显的问题,就是它扭曲,如果这个地方不是很均匀啊。

他们这个产生的结果就会不是特别好好好,那么同样跟二维一样,我希望快呀,高质量啊等等啊,减少扭曲啊啊连续性啊,不连续性要要避免好多,我的样子这个要求好,我们来看一一个三维的一些纹理合成。

我要我们我把它总结成,反正就这么三类吧,好第一类就是过程时有点像这个二维的这种,从那个用函数来表达纹理啊,那么这个呢叫procedure tech,叫过程时纹理就是用一个函数去定义这个纹理的特征。

那么三维空间中它它用它用一个三维,就是x y z就是r3 到一个值得一个影射啊,你这个这个这个这个函数定义好,然后你把这个三维模型嵌入到这样一个场啊,因为空间中任何一个点都有一个颜颜色的这个影射值。

你把这个模型嵌进去,你就可以得到一个这样的每个表面一个顶点就可以演示,那你这个现实地方不一样,就这个颜色是不一样的是吧,但是它总体上表现出同一类这样啊这个这个纹理的这样一个函数啊。

那么这种函数呢呃叫做这个纹理过程啊,过程纹理函数啊,过程管理函数呢这个怎么构造呢,实际上可以通过人为一些方法啊,对不同的这样一些纹理特征去进行描述啊。

那么早年最早年最有名的就是那个85年的cpf叫pin noise,叫那个啊林噪声,它就是通过一个构造方法啊,那这个生成一个函数,这个函数呢通过一些扰动跟随机。

就可以产生出不同的这样一些纹理的这样一些函数图像啊,啊比如啊这个这个叫这个啊特别ence啊,这个函数啊,它是从通过这样一个这个特别ence这个x啊,通过一个论噪声函数。

那通过这个不断的迭代就可以造产生出不同的这样的效果,那么只要在空间中产生这样一个函数,把物体嵌进去,就能长出这样一些啊,把纹理出来,当然这个怎么设一些函数呢。

啊他给了一些这种啊比较通常的纹理的这个构造啊,所以大家也可以去自己去想一下这个函数啊,好你可以看到它当时长长长长的一些这个纹理啊,嗯当时还设计了好多这种大理石纹理的函数啊。

像这种是大理石纹理marble,后来也有很多不同的学者啊,就构造出各种各样的这种这种函数,这样一些这个这个函数出来,函数一旦有了以后,你把物体嵌到这个空间啊,你这个纹理就会更加变化啊。

啊这是早年的一篇基于这个呃模拟化学物质在上,这个化学物质的一个一个叫reaction,这个reaction叫叫融合啊,就是扩扩散方程。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就是让里面的这个一个像素呢看成是一些啊分子,分子之间有一些这个扩散扩散,然后到稳定状态的时候呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就形成一定pattern的纹理,可以可以开上了,当时这个生成一些这样简单的纹理都还是做得到的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还有既然你这纹理是是在空间中,所以你可以定义在题里面,所以这个纹理不仅在表面上可以定义,你帮你把这个球切开来啊,这个看到里面每个体术都是有一个纹理值啊,就有这个叫sorry的tet叫做体纹理。

后面也有很多工作在做啊,啊这这些结果可以看到这样这些体温里面,你把这个物体把它把它切开来,里面这个这个像体术也是有有这个颜色的啊,像像吸管一样的切开来,里面也还是有这个颜色值啊。

跟我们以前讲的那个ct图像一样啊,他们任何一个点它都有一个延迟值好,那我们看一下这个呃,前面那一类,第二类就是基于sample,什么意思呢,这不就是诶我给一个小样本。

怎么把这个纹理长在这个这个这个曲面上,做这个做这个纹理上面纹理合成的大部分都是这样,都是那个呃由呃,把这个网格的顶点附一个颜色啊,那么这样的话就跟这个这个网格顶点有颜色以后呢。

我们就表示这个网格纹理合成做完了,那么这里就有一个问题,就是网格的顶点如果太稀,你每个点各个颜色就就就会很糊,所以你可以看到这个顶点越来越密的时候呢,就看起来效果就会越来越清晰啊,你要做这个事情。

在图像在平面的时候是有一个大小patch,我在曲面上,你把这几个关键的一因素或者关键的这个这个技术把它想明白,三合成你基本上就能够理解一个是我生成多密的网格,这个这个点的领域,你比如说这个矩形。

我大概是怎么去找它的领域的顶点是吧,它的它的大小怎么样,它的朝向怎么样啊,这一个把它类比出来,基本上三维的这个纹理合成就能做了,好我们来对比,这是个平面的一个图像,那么比如说这个像素我取一个55。

它的领域取5x5,这样这样一个像素,那嗯你可以这样去理解这个点呢,就朝各个方向去走两个距离是吧,所以呢如果在一个曲面上,这个点想取缔于呢,我也抄类比的话。

朝各个各个方向呢去走两两个像素或者多少像素的一个距离,就能够采样,如果这些点的颜色有了,那么那么这个点就可以根据这些领域的顶点去找一个最好的像素,把它拷过来啊,所以这样的话就是在曲面上呢。

我们也要去找一个这样的一个矩形领域,做为他的一个匹配的一个策略啊,这个这个元素好啊,所以这个想明白以后,你我再一看哦,给一个这个网格,我的网格呢啊,首先把它周围的一个一个片呢,先把它fratten。

把它参数化到一个平面,那平台以后呢,就可以在这上面进行采样啊,距离这个东西怎么转,就取决于这里应该有一个背后有个向量场,这个方向呢变成x轴为x轴对吧,然后你在这里采样填完以后,就可以把颜色一个个去匹配。

我们这里有个有个演示好这个点这一块先把它展开展开以后,然后进行采样,采样以后呢,这个采样点就可以照像素点去进行比对啊,啊比对完以后呢,就把这个匹配好最好的颜色,把它拷贝到这个顶点来啊。

当然这是假设作为景点有一些信息是已知的,对吧好,所以这个过程并不复杂啊,这个在在20年前或者10 17 8年前的这个发了好多文章啊,因为当时还没人做到啊,又有一些学者历史做到以后就发了不少这种文章。

这思想都是这样,有些大呢,有些他会用用一些多分辨率的方法去做,那这个效果更好好,那么这个是就是多多分辨率的,为什么多分辨率呢,它它有一个好处在于它可以同时捕捉不同大小的特征,刚才有个细节啊。

前面其实知道了哥,我在低分辨率的这样一个呃,比如说k神k的领域抓的特征相当于在高分辨率的2k乘2k,所以他这里用用同样的代价可以去捕获分辨率的这样一些更大的特征,是这个这个匹配的结果呀,更精准好诶。

这个而不丢失一些重要特征啊,这就可以看到它用下面一块跟上面这一块一起去拼,找找一块最相似的过来,可以让这个双方法呢更加精准好,那么网格也一样,你你你这个生成一个低分辨率的高分辨率一起啊。

然后然后去找找一会就可以拷贝好,我们一起把它列出来看看啊,好图像是一个是一个grade结构,在网格呢是一个非规整是吧,这个solution呢就可以把网络加密啊,用用餐用这个采样啊。

以前讲过的这个曲面加密采样啊,那么图像的话自然有一个横横竖,这个x和y当然这里叫uv自然的这个这个标价,所以这标价呢大家都缺损是横平竖直,但是在曲面上呢没有,所以你要你要你要去定义啊这个一个向量场啊。

哪个是切线,哪个是啊啊这个切线是吧,所以你可以在曲面上生成一个向量场,那么这个向量场来指导这个纹理的这个方向,那么这个是在平面的时候,因为是个规整格子,所以它一行一行一行,这个叫扫描线。

这个顺序在明面上的话就不能唯一定义,因为曲面上这个可以证明后面曲面一定有有起点啊,这一行一行加是这个没这个顺序的,那怎么可以随机要不断的去去做迭代就行了,还有那个裤子啊。

这个规整结构这个非常好定义它的名誉啊,网络方面的话就时时刻刻都要进行这个参数化,然后重采样,就是这个过程好明白以后只能实现的难度要稍微复杂一点,但大致思想是差不多。

可以看到这个加密可以用return啊进进化,然后这个顶点越多呢,这个合成的这个密度会越高一点啊,然后怎么生成向量场呢,这里不同方法对吧,你你你曲面上本质上是一个啊流行r b流行本质是二维是吧。

只不过在空间中,所以你可以利用流行上的一些函数去插值出一些,我用户交互的一些一些这个这个方向,然后生成一个光滑的向量场啊,这里我就不展开这个,当然下场也也是个呃。

这个几何处理里面一个比较呃研究比较呃多的一个问题,就是怎么生成下场买一定禁止,像这里有一个词叫复位是magic,什么意思呢,它要四个方向要对对称,有些下场是一条一条是两个方向对对称是吧。

所以如果你希望这个这个这个纹理呢长成这个样子呢,是四个方向,那个差不多,那么你要生成这种有新的这个向量场啊,那么这个向量场本质上这个啊在这个很多应用里面,插动画也很多应用啊。

整整是一个非常重要的一个一个一个一个一个啊,技术就是怎么生成一个符合用户需要的或者应用需要的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这样一向量场好,那么这个是一个事例啊,就比如说用户通过交互,我这个希望这个下半场在这里是这样子,就就是用户交互若干和离散点的向量场,我要生成一个美,每个点都要有个向量的一个方向的向量场。

我应该怎么做是吧,大家看我只指定了这这些点的这个向量值,那么我要生成任何一个点是吧啊,这显然就这个差值问题是吧,所以我们这节课我们前面他的两次课来讲差值思想啊,实际上是大部分问题都在都在求解。

差值都在求解映射啊,思想啊,这个这个抓牢了什么问题都可以查字啊,但文理合成也是这个差值,只不过差值呢是是通过马可波厂来定义的这样一个函数嘛对吧,基本上可以把就会把它叫做差值问题好,所以在上面好。

你这个只不过是一个流行曲面上的一个距离是,那么那么欧式距离变成了由曲面上的距离,就是比如说车底线,你同样可以用rpf啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

同样可以用其他的一些函数去去去差值这些点,那么这是不同的结果的一些啊,就像这个是四,这是二对称这个这个这个厂啊啊那么这个是随机,你看到用不同的场的话,你可以生成的效果看一下啊,这是随机的。

这个是二对称的,这个是是对称的啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你可以看到它那个与这个特性都会有些差别,那么同样也也有这种多多分辨率角哈,那么呃有有两个低的分辨率及扣成一个高的啊,就这样唉,因为低的这个分辨率呢快,因为它它的像素小点点少。

但是这个结果呢可以帮助来合成这个这一层的这一层呢来帮助他啊,就一层层,因为下面这一层呢2x2x2或者或者是3x3,相当于它的6x6,相当于它的12x12,它是24x24。

所以它这一层的话就抓住了这里的20x24的一些东西结构,可以辅助他抓住一些宏观结构,但是呢又不必要用24x2次,这里的大小去抓它的结构,这样的话就速度会比较快一点啊。

因为你在一个高位空间上去找一个最近0年构建一棵树,那个树的为这个这个向量的维数读过很高。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

也是很花时间,所以它为了降维这个思想是这啊,这个是一个示意图啊,这个大家呃就是怎么怎么来生成这个不同分辨率,那么图像的分辨率是大小啊,但是网格服务网格分辨率呢不是不是把它缩小,把它顶点减少啊。

就是以前是n个变成16/44分钟啊,这个这个这个30 33万只能就这样好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这是当年做的一些把这个二维的纹理啊,这个样本合成到曲面上啊,在那个年代这个合成效果还是不错的啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是另外结果好,那么刚才是主点的一个点,我不可能搞明白了一个点怎么去去去去展开是吧,那么有没用更快的方法,一个面一个面当然有了啊,那么这个就是后面就找了一个面的,比如说我我这里拿一块,我就贴上去。

这然后呢我就也是根据领域去匹配,然后去找一块更好的,然后把它把它把它贴上去啊,这个这个那个叫left texture啊,嗯就像就像贴贴膏药的一样的话,就把这个纹理把它贴上去,然后切过程中呢这个切断打。

那么贴哪一块怎么贴,都是用周围的领域这个相似性去去找啊,这里也是一个啊动画演示啊,首先呃找一块这个patch,然后然后不断地去沿着这个曲曲线的这个方向啊,一个个贴好,首先切c这一块。

在这一块的过程中呢怎么填呢,也要局部把它插上生化的,因为呃这个这个曲面是弯的,你怎么怎么去把它那个这个纹理附上这个顶点,就直接把它展开,展开以后把它颜色给运上去,好这一块就结束了,那么再接第二块。

第二块跟他有一些有有一些重叠,重复重叠呢去找另外一块嗯,然后呢就涨涨到第二块好,然后不断去涨啊,中间它也引引引出一些随机随机的现象,就是你先贴贴完以后呢,那些没有填满的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就再根据周边的颜色去去找一个最好的块,那么这个为什么他不用整个块去找呢,他他要取这个这样这样这样一个不规则形状的,这个这个他就是觉得这个不规则形状态就抓住了一些主要特征,因为有些象形。

你看这个问你取一个方块就把它截断了,但合成的不利于这个这个纹理块的完整性,所以你可以看到它都是沿着这个纹理的一些基本的元素的,这个边界来来设置。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

快啊,这样的话可以让让这个合成结果质量更高一点,如果没有结构的话,就就就就随随便举个边界就行了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你那我这就一个演示颜色是怎么去取餐的话啊,怎么参的话,多大覆盖到这样一个sample。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

你就就可以就可以把把这延迟拷贝过去好,那么这是一个refer一个演示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

wifi前面也讲过了啊,我们这里它就重叠一下好,这就是不同的,这是一个随机向量场,是随便贴,像对这种纹理没有特没有特别明显的这种特征,你你随机贴方向啊,不一定要一个光光滑向量场,看起来都差不多。

这些这些纹理都是比较各项同性,像这种纹理呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

异性就要设计一个好的的向量场,让它长起来更好看一点,好把一个老虎的斑纹贴到柱子身上啊,你可以看到向量法不一样啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个大小不一样,生成的这个结果就不一样,那么这是一个当时出在西瓜和那个proceeding这封面上一个结果,但是这个结果初看还是不错的,但是那个年代并且它每每每一秒能生成2伏针还比较快。

因为他拷贝是一大块一大块拷贝啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

啊当然也有一些呃局限是不完美,因为你还是有些地方匹配不牢,因为它不像像呃这个规整图像这个矩形一样,它总是可以拼得牢是吧,因为它不会断,但是不像我网网课上面的话,它呃就就不一定这么这么运气比较好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就碰到啊,这个这是20091片sara选,是当年我的学生参与啊,跟国防科大这个徐凯老师一些,他当时还是学生好,那么我们当时一个一个出发点,就是说有些曲面啊,它那个啊特征很明显。

像像这个曲面它有这么多边界啊,我们文理呢也有这个特征,我希望纹理的特征呢也就online这个几何的特征。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这话那生产出结果呢就不会啊啊这个这个差啊,那么所以我在呃首先给一个给一个几何网格啊,我首先把这个特征给它检测出来,然后我的这个向量场呢尽量的去online,尽量去吻合这个边界上的特征。

就是向量场就是能够在边界上面呢,就能够跟这个特征呢放朝向是一致的啊,当然这里解决一个问题,就是这个下场肯定是有错矛盾的嘛,啊那么这里怎么解,把这个把人些起点,把它把它集中到一些不显眼的地方。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这也是这篇文章工作的一个小卖点,那么你可以看到,如果没有去用这个好的向量场,它合成是这样子,那么我们用的用了好多向量场啊,就是我line这个特征的话。

你可以看到它那些马鞍的特征相这个几何特征就能混合得很好是吧,那么这可是鱼,那么如果这个没这个没online,那么这里online的一些特征可以看到这个鱼的眼睛啊,像这里人脸出不来,我们再看一下啊。

这其实没有用我们的方法啊,这是用我的方法去做的,这个鱼也一样啊,这个鱼的眼睛这些特征都没有啊,那么我们再看一下,这是没有online这个特征,就是online特特征的结果,可以看这个纹理长出来以后呢。

还看起来是不是是个鱼的眼睛好,这个也一样,这个就是特征稍微明显一点,好好这是十多年前的一篇工作,大家好,那么这个当时也有好多啊,可以混合两种纹理啊,在在还有渐变啊。

这个叫progressively和vans的这个纹理合成,这是哦这是02年一篇,我当时你这也是我的第一篇craft啊,这个在微软通通老师知道下好,那这个当时做了什么呢。

就是文理合成是把一张图片把它合成到曲面上是吧,还有一些这个纹理啊,它是什么呢,它是呃有细微的几何结构,怎么就不同的光照,我从不不同事情去看它,不同光照呢它在纹理像是不一样的啊,我们来看这张图片。

就这个是一一个材质,这个那这个呢每个每个图片都是我是视点不变,都是垂直于看它,我光源方向变了,这个可能是从上面造的,这个从侧面造的,所以呢这种纹理呢叫做双向整理函数啊,就是因为它上面有细微结构啊。

有这个microstructure啊,就是有有这样一些这个这个这个这个结构结构呢,当光源不断不断变化的时候呢,它会产生一些自责的阴影,所以导致这个纹理这个图像是不一样的。

本质上是一个什么是一个多元的函数,因为什么它不仅仅是一个二维的这样一个图像,它还有光源不一样,试点不一样这些信息,所以这个叫pdf叫双向纹理函数,本质上就好像是二维,光源是二维,4。2维。

所以它是一个六维函数,所以怎么样把这样一个六维函数把它升到曲面上,始终我合成完以后呢,我上面的光源在变化时候,我也能够看出来他有这样一个立体感觉啊,当时btf这样这样一个合成的这样一个问题好。

因为这个世界上啊事实上的那个啊纹理还是有很多,是像这种木质啊,还是有这种微结构啊,所以啊那么这个方法实际本质上把它把它抽象出来,就是你怎么把一个这样一个高位函数。

因为最近点是同一同一个像素在不同光线下的特征是吧,所以你只要把它抽象出一个真这特征呢啊,就是一个对应的这个像素的一个特征,所以你合成的时候呢,用特这个特征去做匹配就行了是吧,那么从现在来看。

这个影射就是一个啊,比如说你可以网络也可以做是吧,那当时我们是用了它这些语言呃,像素的一个领域的一个啊滤波来做这个真正的抽取,那这特征与维数越高,抓到信息会越多啊,那么如果这个特征为数低的话。

就可能抓不住这个啊这么多视点和光线的啊啊这个方法是吧,这个特征啊,群里有人问你皮肤的几个细节是不是可以可以可以这样来尝试,当然可以了,皮肤呢那个不仅是有几何结构,它还有这种半透明。

这个叫subsurface scattering,就是这个这个半透现象啊,那么那种半透现象的话,它的它的这个光源呢,它不仅是反射,它还有一部分的透视啊,这个我曾经也见过这个用皮肤。

但是皮肤这个采集数据你要先踩到啊,不出不同光线下这个啊它它的表象也可以做合成,那么下面我就略高,你可以看到在不同光源,不同视点看到这个点是做这个颜色是不一样的啊。

那么那么怎么把这些颜色略为这样一个颜色看成是一个简单。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就看的是一个tt啊,btf的这样这样一个表达,买完以后呢,你就合成所一样啊,我们那边有个负债的贡献,就是叫k和口号人以前找或者最佳人这个呃匹配就找一个最好的是吧,那么我们这里呢是说你去找最好的k歌。

那么随机里面产产生一个就是不是就是从刚才讲的是k01 ,就注册找最好的一个过来,实际上那你就啊随机性就稍微弱一点,那么我们说你从最好的五个里面随机挑一个拷过来,可以产生更多的随机性。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好这是当年的这个动画,我当时我这里没有附上来,就是这个结果呢,他不仅是看的是一个曲面上这样一个文理,你光源光源在变上面的这个纹理啊,阴影啊都会跟着在变啊,这个啊当时还是非常非常酷的,嗯就一个结果啊。

但这个事情是一个这种啊磨砂的这样一个纹理啊,就光线在变的时候呢啊你可以看到这些shadow阴影做的变。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个是呃一个封封面的一个一个例子啊,就是那个呃这个是凹的啊,你凹的话,你为光源在变的时候,你可以看到就是两个不同的,我变不变物体,物体的朝向不变,但是我光源是在变,可以看到它呈现的这个样子。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

都能让我们感觉到这个这个是凹的地方是吧,那个时间过得很快,那么就我们后面快速过一下这个几何几何合成,九合成呢跟刚才纹理合成不一样,这个结合成就结合合成这个几何结构啊,就是比如说你是从里面提出合成啊。

像比如说合成这样一些细微结构啊,啊你还可以呃,啊叫叫做类比啊,我这样一个体有个这样这样的特征,然后你这个物体怎么合成跟它一样特征,就把它的特征跟它差异啊,比如拉普拉斯啊,把它把它变变过来啊。

还有当时06年呃,这个当时周坤老师也是在海德微软哈,那么他你提了一个这种基于几何的这种匹配,你可以看到没有这个这一块啊,这个结构跟原来这个结构呢进行一个合着一个match,好几个match。

然后match好了以后呢。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

就把它拼起来啊,不断不断长出来一个东西啊,就像这里啊,我给一个这个几何的一个sample,这三不是图像哦,是是是一个什么,是是一个几何结构,它是一个几何,就像一个铁丝网。

你把把把铁丝网把它合成到柱子上面啊,这是个钱币啊,这个这是个竹篮。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么纹理合成这个呃我就不展开哈,这个你呃这个文理合成讲一点的话,各种方法展开的话,你还要讲两次课,今天我们一次课不到就把它讲完,就是主要讲的思想啊,管理合成一个最大的应用呢。

我感觉啊我觉得就是啊这个啊这个修补修补图图像啊,像这里把这个成年人去掉啊,还有什么还有去啊替换这个图像里面的一些纹理,注意啊,这个替换纹理你还不是仅仅简单,你还考虑它的它的这个阴影啊,这个shadow。

还有还有这种啊空间关系啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个还比较困难一点,好下面还有部分呢才最后一部分部分呢经常分析与理解啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个呃如果讲慢一点,至少要4~5节课啊,那我今天再很快把它过一下,大家知道这里面是什么问题好吧,那分析与理解呢是跟这个呃建模呃,好处理还是相关的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因为它呢呃更更多的是从更高的high level来理解这个形状,好,那我们来看一下recap,就是回顾一下这个前面的课都在讲上面的内容的生成是吧,有些是重建,有些是这个建模设计。

有一些是这个啊通过合成啊,嗯很多模型你看到现在,这是最近的10年越来越多的一些商业模型网站就共享网站出来啊,这模型越来越多啊,不像我们当时读研啊,那个嗯24年前那时候没有互联网啊。

那么我们我们考一个模型都要拿一个这个软盘啊,你们可能然后零零后很多都没见过这种网盘啊,就一个软盘才1。44兆啊,这个模型非常少,我们那时候做研究啊,这个都是呃就帮你啊这个teapot这几个模型啊。

没有像这样这么丰富好,那么随着互联网的发发展,能力建模所占的越来越多,现在互联网上这么多模型,共享这种家具啊,共享这种日常的用品啊,啊还有这种游戏公司共享了好多这种啊动物啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

怪兽啊,所以现在呢这个三维模型越来越多好这里自然就就就有个问题啊,就跟视觉领域一样好,我模型给你了,你怎么去理解这种模型啊,你怎么去组织这些数据啊,比如比如说全是有各种各样的已知。

你怎么把这些已知归成一类来理解理解它,或者是理解它们的结构,理解它他们之间的结构关系啊,这个一个椅子有扶手,有背靠啊,它的关系是啥,还有一个呢有没有语义语义的这个这个理解,比如说这个这个已知的不平等啊。

做这地方是工人做的啊,它是有这个功能,是不是来提供支撑的啊,这样我的腿是来支撑支撑这个椅子功能的等等,这些东现在就就就跟传统的结合处理啊,不一样,结合处理唉,我们以前是建模啊,我们来做去照啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

是局部的操作,这里呢更多的是一种什么glogo全域操作好,那我们可以看到就是这些知识也是属于高级课的内容啊,后面可能games我们也会来呃这个规划一些高级课程啊,让大家啊来了解一下这些更高级的。

那今天我就开个头好,那么一以前我们就是这这个我们给102大部分的这个内容都在讲,重建啊,去造修复啊,都是基于这个点的局部信息,但是呢你要去理解这个全局信息,比如说这个物体你分成有几个语音部分。

好像杯子一个差评,一个茶杯是吧,还有这两个人是不同的模型,我怎么知道他们这个点心一对应的是吧,在讲磨粉的时候也讲过,那时候是通过人工去搞啊,假设1万个人模型,你要自动去找他们对应关系好,还有呢检索。

我通过一个汽车能不能减少出数据库里面,跟我的汽车相似的汽车出来啊,或者这个跟我导致所有汽车出来啊等等,这里就需要有一些非常全局的一些对这个形状的一些分析和理解啊。

所以这个你也可以把它叫做从从这个low level这个processing啊,low level是指他这个处理的这个对象是一些顶点啊,面片还可能就更多的是一些啊这个components,一些部件。

一些关系,一些结构啊,是这个含义,这个这个实际上是挺难的一个问题,因为这个thematic怎么样呢,叫语义,就是你要理解一个物体在做语义,啊这个这个我们人眼一看啊,这个是个啊,这个是四个腿啊。

这个两个耳朵一个头是吧,但是这个就你可面对的是一系列顶点坐标啊,面片啊是吧,他怎么能做这事儿呢,但是我们能力又有需求,所以这就是这个导致这个最紧张呃,10年吧,50年左右,特别是最近的56年啊。

这方面研究非常多,因为现在数据这个量越来越大了啊,也是根据现在的这个背景,大数据时代啊,好那么具体问题呢我坚决不可能展开啊,这个要展开可能还要加1+50克,那么我今天就把这些问题呢再把它一列一下。

大家知道哦,原来这方面问题呢在对于这种啊形状分析和理解,还是很重要的一些问题啊,第一个比如说啊这个形状的特征啊,正在里面有着诶有没有一些重要特征点,你你你觉得这个是对这个物体很很关键。

就是一个人头眼睛鼻子这些啊,那么出你可以利用你以为或者认为这些高学历的地方都是特征点是吧,但是又不是所有搞高血地方,比如说头发这里人气有是吧,所以这个怎么判断,还有这叫silence啊。

就是这个这个这个叫做显著性啊,我这个这个模型给你了,我怎么知道这个脸脸是显著性大的哦,这个头发是显著性不不重要的是吧,如果你要做处理的时候,要把这个脸部的这个特征保持住啊。

其他地方呢可以把它损失掉一些对吧好,还有还有这种特征线啊,这个就啊第一步理解这个形状,还有呢哎这个形状我给你一大堆点点坐标,怎么知道这个这个比如说这个词显现了什么,in应该是这样朝朝朝向放是吧。

这叫upright,你要做很多应用的时候呢,你必须所有物体全按朝向一致才能做好后面后面应用,如果朝向一个是横的,一个是弯的,一个是斜的,一个道德,就这样放了很多很多算法都不work。

所以要把它那个啊这个这个这个超像啊,就像图像处理一样的,你把这图像横着摆才可能很多匹配算法都不work是吧,所以首先要把这个人脸啊全部朝下啊对吧。

并且还要什么保留中间那一那一块再来做算法就稳定好这个分割,分割呢就是怎么理解这个物体的一些components,就是叫做指指部件,头啊啊脖子啊,腿啊等等一个椅子啊啊不有了有了有了有了这些部件以后呢。

我就可以对这个物体的结构就有个初步的了解是吧,这个很多很多计算呢就能做得更好,我给一些物体,我怎么一起来找他们的一个鱼构建,这个这个这个手柄啊,有些平啊,非常的没有底座,那么我通过一类物体。

那可以相互着这个这个帮助支持可以来做很好的一些语义,还有label label叫标签啊,我分割完以后,我怎么知道这这个是头,我怎么知道这个是腿是吧啊,还有这个脱手啊啊这个这个这个呃身体啊,耳朵呀。

头发等等,这个叫label label的话,你你你你嗯,如果只你进个模型给到一个一个算法,可能很难很难做,但是我知道它属于某一类类类,里面有同样雷,对称啊,与像我们人人体本身就就是个对称模型是吧。

我怎么能检测一个模型的对称,因为政治化就是减少了这个模型的这种冗余,因为如果你把它最终找到以后,我只我只要存一半,另外一半只要把它copy过来啊,界面啊,那么对称还有一种男的叫这个饮食对称。

就是它对称呢不是全局对称,它是不分对称啊,这个叫分块对称,还有一个那叫隐私对称啊,就是要通过一个整形变化变成一个镜面对称,但是对称还有很多对称啊,除了镜面对称,还有旋转对称,平移对称等等,好股价。

股价也是理解这个形状的一个非常重要的信息啊,这个一个股价就要要要像比如说比如说做做这个分类为,我可以把动物跟人分离,因为因为它的骨架很相似对吧,我不会把把这个动物跟一个已知放在一块啊。

或者就是一个字母放一块,因为股价太不相似了对吧,因为股价就是三维模型,就是二维流形的一个一维抽象啊,一位股价做出一些线点线面是一个空间图,所以可以也可以很很很抽象的来表达这个上面形状对应关系啊。

还有这关系啊,小到点着点着对应关系,大到物体跟物理的作用关系,还有中间我这个部件跟部件的菌关系啊,所以这些怎么度量啊,就是最关心这里是为什么啊,这个还能找到这个点跟这个点对应啊。

这个嘴巴跟最为主要注意是吧,如果我们能交互,当然很容易交不出来,但是要靠算法还是不不不是那么容易的啊,要不去过,你说就是检索啊,我从我用汽车去检索数据库里很多模型能够找到我的汽车是吧,还有这个分类啊。

这个这个呃飞机这些特征,如果规则在这一类汽车还有动物,那么他们的特征要区分出来啊,怎么怎么把这个特征算出来啊,就是要对这个物物体一个形状,给它一个重量维持向量啊,这个后面我再展开,还有结构啊。

这个物体啊有很多这种像特别是人造物,有好多这种这种物体的对称性结构呀,还有这种层次结构分解好,如果做一个三维场景结构,还有更复杂啊,还有比如说啊这个这个窗帘啊,跟窗户会在一块啊,这个会跟我们蒙在一块。

还有床和床头柜会在一块等等这样的一些场景的一些结构,还有日结构等等,你也可以把它分析出来啊,高载就是功能是吧,呃我建个模型有以后,我发现这个抽屉呢是可以抽出来的,它的功能是抽屉,他可以啊。

这个这个放东西是吧,像这里面还有一些动画啊,像像这个是抽屉是平移的,像像这个剪刀还是可以旋旋旋转的,像这个平着平着盖是可以旋转旋出来的啊等等,好像这个是可以往前推的,因为它是它这个真啊真真的这个推理啊。

就这种现在就是更加语音啊,叫functional functionality,叫叫功能性分析,首先还有动画的这个就是像像这个有个铰链啊,它可以种啊,像这种东西呢就越来越潮。

这个这个这个这个这个物体这个功能的这个这个一些理解和分析了,这个这个呃这个最近几年呃,这个有好多文章在这个叫of pda,pd是中文,我不知道怎么翻译啊,这个你可以把它理解成就是这个物体啊。

人跟他怎么交互啊,比如左上右上角这里有一个已知,那么我们能一看就借出已知是吧,这不是一个呃,这是个运动器械是吧,人呢应该是坐在这里,是大概这个知识就坐在这里才能操做这个应用器械是吧。

这是一个joint这个呃contact,这就是你的这个这个要做到这是吧,好这个东西给给给出来以后呢,我知道这是一张床,是能躺,要躺在这里的,你能不能分析出来这个躺是啊,应该是是是是这个床是工工用来躺着。

这是用来做的啊,那么这个是用来挂东西的啊,这种呢是一个人与这个物体之间的一个交互,叫of fortance,像像像这个手去拿这个杯子啊,这个时候应该是拿这里啊这个物体的抽象啊。

还有还有这种复杂的机机构结构啊,这个呃齿轮跟齿轮之间齿轮这个时能带动它,还有带动这个啊品这样一个结构啊,这个叫机构学,但是在机械学,机械这个领域就是叫机构啊,就是多个部件相互组作用。

组成一个复杂的一个系统啊,你们的手表啊,汽车科二里面到处都是这种这种复杂结构是吧,那么在图形学里里面也有很多人,我就不展开,啊只能拖一下了啊,最后一最后一节课好。

那么后面啊还有这个这个这个叫descript,叫形状描述,子描述指,但是实际上是大家可能也三频道什么特征特征特征特征就是一个,我们来看一下,你要去做这些任务,你是不是要度量两个三个元素,这是一个元素。

可以是个点,比如在这个问题里面,我这里给个点,这几个点你怎么知道这两个点需要对应,是不是要他们非常相似对吧,所以你怎么来做呢,那么相似呢,你要把这两个点都印到一个同样的一个表达,比如说它的曲率啊。

法向啊,是所以要要有同同样位数的一个东西来描述它,这个这个同样位数中心呢,就是那些量就够一个多维就做成一个高维的一个向量值,向量值呢就叫做它的特征,这个特征相似,我就认为这两两个点相似,对吧好。

那么对两个形状也一样,我如果用一些方法把它映射到一个这样站的高高位的,这样一个向向量啊,那么猥琐一样的话,我通过他们两个之间的相似性来度量他们两个能整理相似性,所以元素小到一个零点。

一个面是甚至一个patch或者是一个component部件,也可以是整个形状好,那么这里就是关键是怎么来度量这样一个描述值,能够达到满足我的这个应用需求啊。

那么实际上这些本质上都是在这个做这个描述指的这些操作啊,举例我们拿一个分割啊,这是六个动物,就是六个动物的分割,那么为什么这个头在一块,是因为他们的某种描述纸都聚在这一块。

这个啊这个身体这个这个身体都聚到这一块,在这个振动空间里面,我做聚类就能够如果通过这个这个特征做分割的很好的话,它聚类结果就是它的分割结果对吧,所以分割就是根据特征描述纸来做聚类这样一个操作好。

那么你真的描述指不好,没有这个很好的这种啊,这个这个差异化,那么你这个结果就不会很好啊,好那么我怎么来定义特征呢,一个曲曲曲面上一个点,这个点看它周围的这个这个这个一个几何特征可以有好多呀。

比如说坐标什么长度啊,周边的长度啊,角度面积是吧,还可以用它的微分量,也可以用用它的一些其他的变形量等等来描述这个点的周围的,有这样特性,你像这点跟柱子上另外一个点是不是很很相似啊。

是因为它们具有同样的这些量,但是这个点跟首先这个点就很多量就不一样了,比如说取缔就不一样了对吧,所以人们会想出好多办法啊,用不同的这个几何量去去构造这个特征。

来度量它与别的一些地方的点的这个特征的相似性,但是这些东西呢都是通过人为自己去想的啊,你想一些曲率啊,老刘啊,甚至局部体积啊,或者是表面积啊,或者是抽离线距离啊等等,这个叫lov特征,叫profit啊。

至于考研有好多这个论文来提这种特征啊,我今天呃可时间可能不能详细讲啊,这特征呢就是我我后面呃来讲一讲,就这张来有了特征以后的话呢,就在特征空间去比较他们二二范数,他们这比较小,就表示他们两个相似啊啊好。

那我们看一下这这人还要有个好的性,其实就是一个局部一部分的东西,跟它的全局的特征如果相似的话,更呃就是呃更好,性质更好好,这次找您的一些这个关于全局啊,局部的我我我我也没展开好。

那么比如说一个简单的就是你可以我们以二维图形来举例,一个二维图形是这样一个轮廓,我把它的法向拿来反向,你这是不是引申到一个单位球啊,单边球叫高速球是吧,然后呢我用这个这个这个法向的这个分布。

然后来做做一个分布图像,这个地方反向比较多,这个方向反向比较少是吧,然后就可以来描述这个二维形状,所以把这个一个形状的法向把它编码成这样一个图像。

那么这个图像嗯我们把它叫做啊这个扩展的高斯高斯图或者叫高斯下,如果这个中间下这两个物体就像好吧,哎就是这个意思好,那么就就可以看到三维的,不同的三维的就高次项是不一样的。

好那你可以看到这两个还是比较比较相似的,所以这两个相似性更大,他们两个乡村信息就小一点是吧,好那么这个是用用那个直方图,就是就是采用各个方向的这个这个啊啊。

这个曲线就是在某某个某某每个病下面的这个高这个直方图来比较啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这是早年的一个文章,这是用这个高斯加上一个滤波来来来描述一个形状啊,这是用这个球面的这个一个函数,那么这个是全面的,这个是用那个let’s field。

原来like field是跟那个广场那个原理是一样,把它看重心的,把它组合在一起,就能对这个形状进行一些整理上的描述啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么那么看到这个结果是类似。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那形状大了没有,类似了啊,呃人们实际上定义从各个角度啊来定义了各种各样的三维特征啊,有些是全局的,有的有的是局部的一个点的啊,那么每篇文章都会针对某一类这个这个物体啊,定的这个特征呢是比较好的啊。

这不是不是就没有第一个特征,这种定义对所有物体都work啊,啊注意基本上都是每个特征呢适适用于某一类啊,如果只这一类的话,这个特征你比过了别人,那么你的特征能数值就会很好,具有创新性啊。

这个这文章印就可以写啊一大堆啊,但是但是实际上是这些啊都是集成了人们对这个物体的理解,所以这些啊特征就叫做hand cre啊,就是人物人工定义的特征好。

那么在这个无论是图形学这个对这个形状理解和他的视觉啊,实际上是这个啊定义特征,这是一个非常重要的一个任务啊,这个这个叫特征工程啊,真的就是我要玩完再加上一个图像,我要经常进行分割,the task分割。

我要或者说这些图像这匹马里面这些点都是一类,这个马啊是一另外一类背景是一类好,那你那你问这11233类是像素到底有什么不一样,你要把这特征定义好,你就聚类就不一样是吧。

所以这个你要去设计这个特征特征这里有两个问题,一个叫叫抽取啊,就就刚才讲的定义,但是就另外一个问题叫选择,因为我可以采用不同的方法,就像刚才那张图有那么多特征。

但是呢你是不是把所有特征把它串起来会更好呢,并不是有些因为不同特征呢,像这个图,比如说你要去度量这两两个地方的这个相似性,这里可以找到啊五种这个不同的文章的方法来这个对这个特征的描述。

你可以看到这两个特征啊,描述这种柱状物体啊,不是所有的特征都合适,可能也就这两个合适,所以如果你把不合适,像这两个,这真的是描述比较平缓的地方,它合适,所以如果你把这五个特征全串成一个更高位向量。

反而让它两个相似性不高,所以这里还要合理地选择合适特征去做你的任务,但是如果你不知道,你也不知道怎么选择,像常规做法就把它串起来啊,这是上是有问题的,那么在这文章里面啊,这是12年我的博士生。

而且现在在深大的湖北人,现在也是老师了啊,做得不错,就当时他提出一个方法诶,我能不能我能不能吃啊,就不同的地方自动地去选择不同的特征来描述这一块,对桌面上的特征呢。

我可能是描述1113这两侧整体组合是吧,所以它这个自适应选择,所以呢我们可以把它看成这样一个问,题,是这个子空间之类,像这些点啊,这个平面是一个子空间,这个线和这个线是指空间是吧,这有三个子空间。

所以直播间什么就是不同的这个子空间的这个特征呢,是用不同的方法去做它的描述啊,这样的话就可以把它后面上是这样一个呃系优化问题,我就不展开,后来把它用到了这个形状分割效果不错,最近的五到10年吧。

就是真的崛起火了啊,就是说人工特征就叫handcrafted,特征就不够好,因为什么你太多的人工经验啊,你对几何可能所有人定义的特征可能会好一点啊,还有呢我们不多特征啊,哪个是最好的,不知道你要去选择。

就跟我刚才讲的是吧,还有呢你如果你把所有特征把它串起来,实际上是往往是不好的,是overfit啊,overfitting的一个特征,那么所以说诶后面就什么端到端,什么意思,以前是要人工特征设计。

再选择去做任务,现在呢我就直接输入我的图图片,还有根据我的预先采集到的一些sample样本啊,这个样本都标好了,那么我中间通过很多影射,这个影射一个特征,第二个隐身造成一个选择,但引申到这个任务。

所以呢中间呢就就跳过了人工设计这一块啊,那么中间所有东西呢是经什么,由这个预先标定的一些数据集去做它的那个啊,fit用用用所谓的一个神经网络网络,它把这个函数空间变得非常灵活。

所以这样反正我直接从图像出发,不用去通过提取特征,通过很多很多层银色,像每个到底是影像是什么,也没有语音语音概念啊。

但是呢它能够通过这样一个not function to minimize这些函数的一些系数啊,就网络系数就可以得到这个很好解,把你这个数据量足够大啊,大到什么呢。

我认为一个处处像你都能在里面找那个相似的,得到一个很他的解,当然也很好了是吧,所以这个这个就不需要中间人工设计。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

那么这个方法呢叫做端到端and好好网络,以前我也解释过,它本质上只是一个拟合函数,我们就在做拟合。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对吧好,还有从基本点名去学,还有一些图图表达啊,这个我不展开那么大,有兴趣的可以去扫描这个二维码啊,呃我大概几年前吧,这个那你你要理解好了以后啊,好的函数的度量就是not function。

然后去做一做优优化好,那我们呃只不过在我们这个学科的拟合函数,二维和三维和可视化比较容易,高维是不容易,所以它这个可解释性就不强啊,嗯好那这个我我就不展开,他是他还是在做数据的这个一个飞艇啊。

有它的一些啊压缩感知吧啊有些类比性我也不展开好,那么再讲讲这个趋势啊,趋势嗯,我今天就主要是讲一些内容啊,这个具体方法有很多,我没展开,但是呢你可以看到,即使因为数据随着最近几年在不断的增长。

但是数量级还是比不过图像,但图像112年啊,李飞飞叫做公布的英语net达到上千张是吧,我们现在的三维模型,这个上万张上万个几10万个模型就算多了是吧,你远远还没达达到千万级别啊,可以等等。

要随着这个采集设备重建啊,可能再过一段时间,这个数据量就会达到一个级数量上级别的增高,那就是几何于别的一些模态,这个叫跨模态,cross in,啊我不仅是文本啊,啊不仅图像,还有文本。

还有甚至还有视频啊,因为同学们知道就是图像啊,文本啊,他们因为质量比较多,他们这个很多模型啊,可以在某些应用上可以做到的是吧,那么我们怎么样利用他们的一些信息来做到单位形成的,一些高于高层次的。

也理解就是这个冷兰啊,这个对于我们来讲就是怎么创造创作这个内容仍然是个挑战啊,就是到现在还是远远没有解决了一个问题是吧,我我上节课的末尾也讲了,就是重新学三三大任务,建模仿真啊,渲染啊。

这个其他两个呢基本上方法上面就是就是解方程嘛,但是在建模这一块呢,还是啊离我们用户需求还是很远啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

最后。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

天下没有不散的宴席,好这个这个课啊。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

到现在15周啊,那那个连续15周啊,那个这四五周我也是啊这个精心准备了,每每每每节课都是整整个一个礼拜天啊,所以所以也也是也是花了非常多的时间,把这个我所这么多年很理解啊。

这个变成了这样一门这个基础课程呃,比较系统化的啊,但是没有很详细,因为时间比较少,但是这这个零几何从从这个拟合开始,大家啊一定要理解这个拟合的思想啊,这个属于连体几何啊。

这个在研究生里面我们是一门一门专门课,叫计算机辅助几何设计啊,那叫数据处理,有何处理好,就是讲这个曲面是零上表达点线面网格好是吧,所以内容大概过一下啊,还是内容比较多的啊,这个应该分成两门课来讲啊。

我我把它比较紧凑的分成分成一节课,还有他的一些方法啊,那当然没有讲到啊,很展开时间有限,每次也就一个半小时啊,看我到了那个我们啊处理的所有的一些方法论啊,那么一些什么特殊这种方法呢。

还有一些表达形式可能不一定顾及得到,但是你能理解以后呢,再去看那些文章或者去阅读的时候呢,就会有更啊,这个啊很快不能理解好,那么呃这个呃介绍两本书啊,这本书呢左边那本书呢是好几年前。

你写的是跟我的博士导师王国瑾教授啊,浙大啊这个写了一本结合计算,毕竟有处理这本书呢更多的是连连续集,连续集合多一点,最后的五张啊,那么对于连续几离散几何呢,我最近的2年多啊,还有黄金教授一起合作啊。

写写写完了一本刚刚刚刚写完啊,一个离散几何处理应用啊,当然有些我们课的内容,这个这本书也陆陆续写了大概2年多时间啊,最近在教稿啊,希望啊能够在春节之后就能出版啊,同学们可以关注一下啊,里面也有啊。

除了这个我们讲的内容,还有好多其他内容也在这里面进行了详细的展展开啊,大家如果同学们啊这个后后面如果这个书证书版了,我也会以一定的方式来跟大家这个通知一下,好吧,呃写书是非常耗耗时间的啊。

这个花了花了我们大量的时间,这次这个课程呢我们也布置了实实是作业啊,这个所作业啊啊嗯嗯你看着眼算是我也是精心设计啊,从简单的函数拟合到后面的啊,这个参参数曲线拟合到后面的这个细分啊。

到极小曲面转化到这个后面五个是离散网格是吧,去参加画传统画里面即交往曲面就接触了这个吸收取证求解,这个非常重要啊,常态化这个也是吸收方式,吸收吸收取证求解啊,初步体验一下这个典型的构建啊。

所以你每个地方的知识点都不一样啊,但是你们掌握这时如果同学们能够坚持啊,我也非常感谢啊,也非常高兴看到有啊,还是有不少同学能够坚持是做完十个十个作业啊,有些事还甚至有些是企业的员工啊,真的不容易啊。

那么我相信你呢,同学们如果做完这十个作业,收获是一非常大啊,这个基本上了解了大部分的这个方法,你们后面去看文章,看别人的一些文献啊,或者看别人一些代码啊,相对来说就不会那么困难好。

那么这个几何结合这个我们把它叫几何计算,也叫图形计算,有哪些用领域,实际上是除了传统的大家看到就对这个几何模型的这个啊设计以外,还有不同的领域,好像我们做研究,我谈谈我的体会啊。

那么我这里画一个这样的施工格啊,就是就是横轴呢是人人是一主体是吧,物和场景,单个物体和多个物体场景,还有虚拟,这边也是人和物,物和场景是实的呃重头,那么这里有有四个格子啊,在问号啊。

比如说我我们可能看第二个格子,实际上能跟虚拟的人能干嘛,对吧啊,实际的人根据虚拟人是不是就是vr对吧,所以vr里面有大量的这样一些几何问题,比如说怎么去重建我的人送到对方去,怎么去呃。

进行这个上面这些个交互对吧啊,像最近几年我们围绕着这个vr领域的这个大场景啊,这个没法在小的场景里面进行很好的光滑的一有漫游啊,我们连续做了这个占三篇高质量的工作,解压初步解决啊,给出了一个这个大场景。

在小的实景里面的漫游的一个策略啊,啊这个就是最近3年连续做的工作,好,你看这个这个问号,这个问号是什么,实际的人去操纵虚拟物啊,这个这个是是个什么啊,比如说我实际人去操纵虚拟物,vr也有有操纵是吧。

还有建模是吧,所以建模这是一大块,我们有我们我们团队啊,还有团队老师也做了很多像这种啊分析啊,传统化呀,曲面影射,这是最近几年的一个非常啊的一个工作啊,好,人脸重建,我们再看这个问号,就问号什么呢。

是虚拟的人在实际的物体和场景中,那么训练的人在实际场景中是吧,那么这个虚拟人可能在跟实物场景交互是吧,那么这个它的一个代理就是机器人领域啊,我机器人是相当于是具我一个虚拟的人的一个行为,还有他的思考。

像机器人能不能主动地去这个场景啊,能不能主动去抓杯子啊,能不能主动的去跟实际的场景和人进行交互啊,就需要把我们人类的这个认知,把它把它赋予机器人是吧,这里面就是看唉我们也做了新的工作啊,能不能啊。

这个让这个物呃这个机器人机械臂啊去抓物体啊,人漫游啊啊,能不能让机器机器人自动的去在一个场景里面去去探索,锁空间啊等等啊,第一个问我这个这个这个空白就是右下角啊,虚拟的物到实际的物。

或者是啊啊这个就是制造是吧,物理出来以后以后怎么去变成实物啊,就制造啊制造啊,这个也是我们团队一个比较大的特色,我们我们面向三维打印做了这样的这个结合处理优化啊,因为呃大概3年前这个三维打印出来的时候。

我发现这里面有这个,它只是把一个虚拟的一个模型变成一个实际的模型,中间其实是有很多问题啊,轻轻量化呀,还有这些这个这个这个拓扑优化等等等的问题啊,当然还有一些结构的一些一些这个分解啊等等啊,我就不展开。

因为这个10年前可能这些工作是我们重新学的呢,是不会去做的,也做不了,为什么那个10年前你这个物质变成虚拟物体,变成实际物体是要去找工厂,去找各种各种这个工工具啊,切床铣床,刨床,磨床啊,这个这个等等。

那你才能去做那么3d打印,先让这个制造呢成为一个非常啊非常非常啊这个比较方便的一个过程,这样吧我们我们做这种方面的一些处理啊,这也是最近10年吧,五到10年发生一个变化啊,现在是现在这个国家也在呃。

呃在关注这个工业软件,这些东西也是跟这个相关好,那我们最后花个几分钟吧,我们总结一下啊,那么几何数据呢呃随着那个声音一维的图像,二维视频,三维数据的这个发展到最近的10年20年吧。

随着这个深度相机采集这个模型越来越多,它也可以成为啊这个一个新的一个数字媒体啊,它是真正的全三维的去表达这样一个世界啊,世界中的物体啊,场景啊等等是吧对啊,最近也是研究热门,并且这个应用越来越广啊。

特别是今年china graph啊,这个在厦门11月份啊,这个很多企业也参与到了我们这个大会的赞助啊,这个讨论啊,觉得这里面是非常多的,这这个应用潜力也非常缺人才啊。

这个都在会上共同形成了一个关于图形的春天这样一个概念是吧,还有很多呃这个创新创呃,这个创业企业都对这个图形的这个技术具有很大的一些需求量,所以同学们如果感兴趣多关注一下,实际上是这个这个呃人才。

这个你只要只要只要你有料啊,是走是还是可以发挥非常大的作用的,但是三因为上手呢也比较难是吧,因为这个课我也看出来,开始大家跟上的同学还是不是不后来卓越到越来越的时候呢,就就就跟着人就不多了是吧。

毕竟这个它的它的它的难度是有的,为什么一个是它的几何,你可以看到这张图表达一个几何,有点于网格体术距离场,还有函数组合,好吧好吧,这么多表达,所以说它的这个不像图像,就一个举证啊。

举证呢就是一个n行m列的一个这样的方块对吧,这个每个呃元素存rgb对吧,就是它的结构很简单,编程很很快,为什么啊,这个呃很很擅长处处理这种举证的是吧,所以基本上这个这个编程都不需要了哈。

你拍成跑一下一个框架,所以他们那个相对来说觉得上手确实容易,但是图形的话啊,这个这个光靠这个matlab是不行的是吧,有大量编程啊,数据结构啊,但难点在有的话,就算人就不多嘛,所以大家如果能在这一块啊。

有更获得这种能力发挥的这个潜力啊,不过这个机会就会很多,好多数学上的难度啊,这个拓扑很复杂啊,这sampling啊,还有这个很多细节啊,这个我就不展开好,最后我们再讲一讲呃。

这个102的课也是这个games这个平台创建以来的第三门课啊,可以看到呃101年龄起啊,201活跃明是去年上半年疫情期间是吧,下半年我就开开了102,那么这个根本是也是当年17年我来为主创建的啊。

到现在运营啊,应该也让很多同学啊对这个学术界奇,都是应该也有很大的帮助,我也很高兴看到这个团队不断在在变,从最初一个群到现在13个群有6000 6000多人啊,第13个群也会快满了啊。

呃可能再过段时间14位圈啊哈那么呃我们这个做完了以后呢,在后面我们应该会有广告啊,这个呃20202203我们已经规划好了啊,等下下介绍啊,就在这里嗯,大概在春节之后啊。

由年龄企业会继续开一门这个高质量实时渲染啊,这就应该在2月下旬或者或者3月初啊,这个呃因为美国他们那个现在已经开学了,好年立起正在准备好,所以啊到时候会在群里面通知大家啊,那这之后6月份在黄提心啊。

这个ut austin的啊,就会讲这个三维视觉和理解,这个就是今天我后面最后一部分题课所讲的那个三维理解,这个一个高级课啊,大家注意,大家也可以继续关注203啊,怎么去理解这个三维的一些形状的啊。

性性质,这里啊大部分的这个方法论啊,大家大家有兴趣也可以继续关注一下,我们我们也在做一些努力啊,降低图形学的门槛啊,所以我们在推动和普这个这个开源文化啊,因为视觉领域呃,啊拍这个框架出来啊。

大家就上手非常快是吧,连高中生都可以马上去跑跑好多这种啊这个视觉的任务啊,可以可以可以写很多文章啊,这个我们也希望通过我们的努力啊,这个今年在川普拉普,我们专委会就是计算机学会啊。

这个计算机辅助设计与重新学的专委会啊,我们设立了这样一个图形开源讲,应该是图形开源,一个是还有数据集开源啊,如果在座的各位,啊你们有一些开源项目,欢迎你们来关注一下,这个开始讲,我们每年会评一个啊。

这个啊我们也有好多在以前也积累了一些别的一些啊,这个资源好像可能上面这个付老师也是我们团队的啊,因为年年轻老师充满了这个能量和热情啊,他在去年上学期在我们科大呃开里面数字几何处理,面向博士生和研究生的。

他也把这个录成了一个视频啊,免费共享在b站啊,大家他的那内容就就讲的比我这个课要细,并且专注在后面的离散结合啊,另外呢就是呃这个three d啊。

这个solidometry innovation是一个国际化的一个这个啊也是刚刚创办,也还不到17,美洲有一个报告啊,美国就北美,欧洲和亚洲轮着来啊,有不同的讲者啊。

然后呢那个呃呃我们科大这个张馨宇老师也参与这个组织啊,把它移到了我们国内的b站啊,所以在前几天这个已经移过来了啊,这样的话也让国内的这个这个啊同仁啊,能够享受到这个国际的这个盛宴啊。

虽然他们这个讲的都是英文哈,这个大家通过ppt啊,顺便也可以定有点听力嘛啊也可以学到很多东西啊,像这里讲的这个我我看了一下现有讲的一些讲者都是在p上,在三维几和视觉这方面做得非常好的一些学者啊。

他们的这个有些讲的报告啊,嗯就是比较比较最新的,还有一些方法论也是非常好啊,那么如果同学们有兴趣啊,b站上面都有比较全的啊啊啊,另外一句话,如果呃同学们还有对这个计算机图形学基础啊。

要因为这个这个上这个课过程中,也经常收到一些同学来问我要学重新学,我应该算什么课,但上一个一个比较好的课,大家都都都知道的,就跟的是101啊,这个严老师还讲的非常不错啊。

然后我上学期这个也是疫情期间也是网络授课,所以在克拉也看你们这个给我们本科生的啊,这个这课的内容呢相对来说比严老师课是要多一点啊,作业量也大,所以呢如果你们想比较好的训练这个编程啊。

还有一些这个相关的这样一些这个呃内容可以去访问这个主,上面有ppt下载主页,还有录屏的是下载地址啊,也欢迎大家呃这个推荐给不同的入门的啊,希望入门就能重新学的一些啊,同学啊,或者是一些啊这个师弟好。

师妹好,最后再做几个会的这个广告啊,啊这个会议呢是我们games这个在线平台的一个线下交流会,每年一次,去年由于一新的就没有开展啊,推到了今年啊,今年是在西安5月份啊,这个从现在来看。

5月份到底到底能不能这个现成功举行啊,看疫情的发展,但是到线上我们还是希望把它展开起来好,而不是取消,所以呢呃可能呃如果疫情不是那么严重,那个那个如果这个国内形势很好,我也鼓励大我们都到西安去啊。

面对面啊,呃现场我也会在啊,这个可以跟不同的学者,还有企业写同人啊,这个可以展开一些面对面交流啊,那么这是跟那个是啊那个可以同时举办的一个英文会议啊,这个大家如果有投稿也可以欢迎啊。

但是投稿的期限可能已经快快到了2月初啊,那么是8月份在另外一个国国内会议啊,叫全国计算机辅助几何与同一学大会啊,这是专委会的一个年度会议啊,参与人也比较多,大家也可以关注一下啊。

是另外一个呃关于几何这个偏几何设计与计算啊,就像这个样条啊,这个内容也比较广泛,这个在10月在国防科技大学啊,这个在长沙啊举办啊,这个比较晚,我相信这这个会议应该是线下还是没问题的啊。

就像今年桥梁在厦门,我们也是呃规模空前啊,500多人大会呢我们都是这这几年也是在推动啊学术与产业的结合啊,如果曾有产业界的这个同人朋友啊,这个希望很快的了解到这个学术界的一些,或者认识到学术界的一些呃。

呃同人和教授啊,可以来展示你们的产品,展示你们的这个真甚至做一些这个呃呃产品的或者招聘宣宣传啊,这样话呢能够让啊,这个贵企业能够很快的得到学术界的这样一些认识啊,这个课呃15周啊。

那个啊基本上还是比较顺利,除了其中有一次这个直播平台出了一个问题啊,这个后来我补录了那一节课啊,这个后背后啊,感谢这个现在的game平台的这个呃执行啊,这个负责人啊。

周晓薇老师以及以及他的两个基础秘书啊,一个陈琳号,一个董庭郡啊,这个每次这个视频的剪辑以及上传都是由这位两位同学来负责完成,这个再次特别感谢,那么另外也感感谢我们三位助教啊。

我的三位啊呃也流动员博士生庄涛和玉成是硕士生啊,都都是非常优秀的学生啊,就是庄涛同学啊,花了将近1年多时间啊,现在继续还在不断的啊,这个升级就是那个utopia这个框架啊的那个。

也是同学付出了很大的努力,每次作业都是非常认真的去看你们的代码,好帮你们提些意见,好好后,这个呃认识活到老,学学那个学到老,虽然中间有很多痛苦啊,这个中国是呃人在冲这过程中是成长是最快的啊。

这个你通过过程中一定是有很多收获啊,那个也非常感谢各位学员的这个陪伴啊,连续15周,那么另外就是如果各位同学或同仁吧,如果需要跟我们来讨论交流,我们做好,欢迎好吧,我们的这个邮件邮箱啊。

这个一些方方式都在网上啊,我我都在啊,大家如果有希望我们以后通过合作,然后再不断交流来共同促进这个学科的发展。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

好好最后再次感谢大家好,我们这个课就结束了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值