How to fusion two Gauss Distribution
N
(
x
,
μ
0
,
σ
0
)
N
(
x
,
μ
1
,
σ
1
)
=
N
(
x
,
μ
′
,
σ
′
)
\begin{equation} \begin{aligned} \mathcal{N}(x,\mu_0,\sigma_0) \mathcal{N}(x,\mu_1,\sigma_1) = \mathcal{N}(x,\mu',\sigma') \\ \end{aligned} \end{equation}
N(x,μ0,σ0)N(x,μ1,σ1)=N(x,μ′,σ′)
μ
′
=
μ
0
σ
1
2
+
μ
1
σ
0
2
σ
0
2
+
σ
1
2
=
μ
0
+
σ
0
2
(
μ
1
−
μ
0
)
σ
0
2
+
σ
1
2
σ
′
=
σ
0
2
σ
1
2
σ
0
2
+
σ
1
2
=
σ
0
2
−
σ
0
4
σ
0
2
+
σ
1
2
\begin{equation} \begin{aligned} \mu' &= \frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2} = \mu_0 + \frac{\sigma_0^2 (\mu_1 - \mu_0)}{\sigma_0^2 + \sigma_1^2} \\ \sigma' &= \frac{\sigma_0^2 \sigma_1^2}{\sigma_0^2 + \sigma_1^2} = \sigma_0^2 - \frac{\sigma_0^4}{\sigma_0^2 + \sigma_1^2} \\ \end{aligned} \end{equation}
μ′σ′=σ02+σ12μ0σ12+μ1σ02=μ0+σ02+σ12σ02(μ1−μ0)=σ02+σ12σ02σ12=σ02−σ02+σ12σ04
k
=
σ
0
2
σ
0
1
+
σ
1
2
μ
′
=
μ
0
+
k
(
μ
1
−
μ
0
)
σ
′
=
σ
0
2
−
k
σ
0
2
\begin{equation} \begin{aligned} k &= \frac{\sigma_0^2}{\sigma_0^1 + \sigma_1^2} \\ \mu' &= \mu_0 + k(\mu_1 - \mu_0) \\ \sigma' &= \sigma_0^2 - k\sigma_0^2 \\ \end{aligned} \end{equation}
kμ′σ′=σ01+σ12σ02=μ0+k(μ1−μ0)=σ02−kσ02
EFK
根据建模预测:
x
^
k
=
F
k
x
k
−
1
+
B
k
u
k
P
^
k
=
F
k
P
k
−
1
F
k
T
+
Q
k
\begin{equation} \begin{aligned} \hat{x}_k = F_k x_{k-1} + B_k u_k \\ \hat{P}_k = F_k P_{k-1}F_k^T + Q_k \\ \end{aligned} \end{equation}
x^k=Fkxk−1+BkukP^k=FkPk−1FkT+Qk
将预测转到测量空间:
(
μ
0
,
Σ
0
)
=
(
H
k
x
^
k
,
H
k
P
^
k
H
k
T
)
\begin{equation} \begin{aligned} (\mu_0,\Sigma_0) = (H_k \hat{x}_k, H_k\hat{P}_kH_k^T) \end{aligned} \end{equation}
(μ0,Σ0)=(Hkx^k,HkP^kHkT)
测量(measurement)满足:
(
μ
1
,
Σ
1
)
=
(
z
k
′
,
R
k
)
\begin{equation} \begin{aligned} (\mu_1,\Sigma_1) = (z_k',R_k) \\ \end{aligned} \end{equation}
(μ1,Σ1)=(zk′,Rk)
融合预测和测量:
K
=
H
k
P
^
k
H
k
T
(
R
k
+
H
k
P
^
k
H
k
T
)
−
1
H
k
x
k
=
H
k
x
^
k
+
K
(
z
k
′
−
H
k
x
^
k
)
H
k
P
k
H
k
T
=
H
k
P
^
k
H
k
T
−
K
H
k
P
^
k
H
k
T
\begin{equation} \begin{aligned} K &= H_k\hat{P}_kH_k^T(R_k + H_k\hat{P}_kH_k^T)^{-1} \\ H_kx_k &= H_k\hat{x}_k + K(z_k' - H_k\hat{x}_k) \\ H_kP_kH_k^T &= H_k\hat{P}_kH_k^T - KH_k\hat{P}_kH_k^T \\ \end{aligned} \end{equation}
KHkxkHkPkHkT=HkP^kHkT(Rk+HkP^kHkT)−1=Hkx^k+K(zk′−Hkx^k)=HkP^kHkT−KHkP^kHkT
化简之后:
K
=
P
^
k
H
k
T
(
R
k
+
H
k
P
^
k
H
k
T
)
−
1
x
k
=
x
^
k
+
K
′
(
z
k
′
−
H
k
x
^
k
)
P
k
=
P
^
k
−
K
′
H
k
P
^
k
\begin{equation} \begin{aligned} K &= \hat{P}_kH_k^T(R_k + H_k\hat{P}_kH_k^T)^{-1} \\ x_k &= \hat{x}_k + K'(z_k' - H_k\hat{x}_k) \\ P_k &= \hat{P}_k - K'H_k\hat{P}_k \\ \end{aligned} \end{equation}
KxkPk=P^kHkT(Rk+HkP^kHkT)−1=x^k+K′(zk′−Hkx^k)=P^k−K′HkP^k
这里的
K
K
K 被称为卡尔曼增益。观察(8)中的
x
x
x变化,其中后半部分体现的是观测和预测的差,而卡尔曼增益即为该项的权重。