GWAS理论 1-5 全基因组关联分析结果解读与经典案例介绍

本文深入探讨了全基因组关联分析(GWAS)的主要结果,包括置换检验和统计阈值设定。建议使用bonferroni threshold和FDR进行显著性判断,并强调环境影响下的分析策略。此外,通过串联重复序列的案例,展示了GWAS在功能验证和实验验证中的重要性。最后,介绍了BSA分析法,特别是BSA与ED算法、SNP-index的区别,以及其在基因定位中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、主要结果


二、结果可视化与后续分析建议

置换检验(Permutation test)
bonferroni threshold 和 FDR 看我之前的简书文章有解释

可视化

理想结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值