深度学习基础--Bottleneck(瓶颈) Architectures

本文深入探讨了ResNet中的Bottleneck(瓶颈)结构,解释了其如何通过减少参数数量,使网络深度增加,从而简化训练过程。Bottleneck设计在保持输入输出通道数不变的情况下,减少了中间层的通道数,形象地展示了其核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bottleneck(瓶颈) Architectures

  ResNet的核心内容之一,即“Deeper Bottleneck Architectures”(简称DBA),一言概之,bottleneck是一种特殊的残差结构。
在这里插入图片描述
Resnet论文里的原图如上(即Bottleneck V1 ),左图是普通的残差结构,右图是瓶颈结构。具体而言,block的输入和输出channel_num是一样的(上右图中是256),而在block结构中的channel_num(上右图中是64)是小于输入/输出channel_num的,很形象。

作用

  换成bottleneck design以后,网络的参数减少了很多,深度也加深了,训练也就相对容易一些。

### Half-FPN Bottleneck in Neural Network Architecture Feature Pyramid Networks (FPN) are widely used in object detection tasks to improve feature extraction across various scales. The term "Half-FPN" suggests a variant or simplified version of FPN designed to optimize performance while reducing computational overhead. In standard FPN architectures, features from different layers of the backbone network are combined through lateral connections and top-down pathways to generate multi-scale feature maps. However, implementing full FPN might introduce unnecessary complexity and resource consumption for certain applications where efficiency is critical[^1]. A **Half-FPN bottleneck** typically refers to an optimized design that retains key benefits of traditional FPNs—such as enhanced multiscale representation—but with reduced parameters and operations. This optimization could involve: - Utilizing fewer levels within the pyramid structure. - Simplifying fusion mechanisms between bottom-up and top-down paths. - Employing lightweight components like depthwise separable convolutions instead of regular ones. For instance, integrating such bottlenecks into models based on ShuffleNet V1 would align well with efforts towards model light-weighting described elsewhere[^2]. Similarly, applying Cross Stage Partial connections found in CSPNet may further enhance this approach by balancing computation costs without sacrificing much accuracy[^3]. To implement a Half-FPN bottleneck effectively, one should consider how it interacts with other parts of the overall architecture, ensuring compatibility and synergy among all elements involved. ```python def half_fpn_bottleneck(features): """ A simple implementation example of a Half-FPN bottleneck layer Args: features (list): List containing input tensors at different resolutions Returns: list: Processed tensor lists after passing through the Half-FPN bottleneck """ # Example code snippet showing basic idea; actual realization depends heavily on specific requirements processed_features = [] num_levels = len(features) for i in range(num_levels - 1): upsampled_feature = tf.image.resize( images=features[i], size=tf.shape(features[i + 1])[1:-1] ) fused_feature = tf.add(upsampled_feature, features[i + 1]) processed_features.append(fused_feature) return processed_features[-num_levels:] ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值