论文:https://arxiv.org/abs/2303.14651
代码:https://github.com/hujiecpp/YOSO
文章目录
Abstract
在这篇论文中,我们提出了YOSO,一个实时的全景分割框架。YOSO通过全景核与图像特征图之间的动态卷积来预测掩码,您只需要一次分割就可以同时完成实例分割和语义分割任务。为了降低计算开销,我们设计了一个特征金字塔聚合器来提取特征图,以及一个用于全景核生成的可分离动态解码器。
聚合器以卷积为主的方式重新参数化了插值优先模块,这显著加速了管道的速度,而没有额外的成本。解码器通过可分离动态卷积执行多头交叉注意力,以提高效率和准确性。据我们所知,YOSO是第一个实时全景分割框架,与最先进的模型相比,它能够提供竞争性的性能。具体来说,YOSO在COCO上实现了46.4的PQ,45.6的FPS;在Cityscapes上实现了52.5的PQ,22.6的FPS;在ADE20K上实现了38.0的PQ,35.4的FPS;在Mapillary Vistas上实现了34.1的PQ,7.