【已更新完毕 M奖水平!】2025数学建模美赛C题思路代码文章美国大学生数学建模Models for Olympic Medal Tables

详细内容请看文末或在主页简介, C题第一版 文章+代码已更新完毕, 思路、预处理代码、全部问题代码已更新
第二版限量版本 文章+代码+结果+过程数据已更新完毕

第二版:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

第一版:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

代码展示

#!/usr/bin/env python

# coding: utf-8



# In[1]:





import pandas as pd

import numpy as np

from datetime import datetime





# # 数据预处理



# In[2]:





# 加载数据

medals_df = pd.read_csv('./2025_Problem_C_Data/summerOly_medal_counts.csv', encoding='ISO-8859-1')

hosts_df = pd.read_csv('./2025_Problem_C_Data/summerOly_hosts.csv')

programs_df = pd.read_csv('./2025
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京深圳在总指数中名列前茅,分别以91.2684.53的得分领先,展现出强大的资金投入、创新能力基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业研究人员。 使用场景及目标:①了解低空经济的定义、分类发展驱动力;②掌握低空经济的主要应用场景市场规模预测;③评估各城市在低空经济发展中的表现潜力;④为政策制定、投资决策企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设区域融合错位的重要性,提出了加强法律法规建设、人才储备基础设施建设等建议。低空经济正加速向网络化、智能化、规模化集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
针对2025美国大学生数学建模C的第一问,该目涉及对奥运会牌数量的预测。此问可以通过多种机器学习算法或统计方法解决,下面提供一种基于线性回归的方法来构建预测模型。 ### 构建数据集 为了训练模型并做出合理预测,需要收集历届奥运会各国家/地区获得金牌、银牌以及铜牌的数量作为输入特征,并可能加入其他影响因素如参人数等辅助变量。这些数据可以从官方体育数据库获取[^2]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 假设已经有一个DataFrame df包含了历史奥运成绩其他潜在的影响因子 df = pd.read_csv('olympic_medals.csv') # 替换为实际文件路径 X = df[['year', 'athletes_count']] # 特征列:年份运动员数目 y_gold = df['gold'] # 预测目标:金、银、铜牌数 y_silver = df['silver'] y_bronze = df['bronze'] # 将数据分为训练集测试集 X_train, X_test, y_train_gold, y_test_gold = train_test_split(X, y_gold, test_size=0.2, random_state=42) _, _, y_train_silver, y_test_silver = train_test_split(X, y_silver, test_size=0.2, random_state=42) _, _, y_train_bronze, y_test_bronze = train_test_split(X, y_bronze, test_size=0.2, random_state=42) # 创建三个独立的线性回归器分别用于三种类型的牌预测 model_gold = LinearRegression() model_silver = LinearRegression() model_bronze = LinearRegression() # 训练模型 model_gold.fit(X_train, y_train_gold) model_silver.fit(X_train, y_train_silver) model_bronze.fit(X_train, y_train_bronze) # 使用测试集评估性能 predictions_gold = model_gold.predict(X_test) mse_gold = mean_squared_error(y_test_gold, predictions_gold) print(f'Mean Squared Error (Gold): {mse_gold}') ``` 这段代码展示了如何利用Python中的`pandas`, `sklearn`库来进行简单的线性回归分析以估计未来某次特定事中某个代表队可能会赢得多少枚不同种类的牌。当然,在真实场景下还需要考虑更多复杂的因素并对模型做进一步优化调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值