content
Channel Representation in Delay-Doppler
In communication, they are used to represent channels by means of a superposition of time and frequency shift operations.Figure 2, shows an example of the delay-Doppler representation of a specific channel which is composed of two main reflectors which share similar delay (range) but differ in their Doppler characteristic (velocities).
在通信中,我们通过时间和频率变换操作的叠加来表示信道。下图展示的是两个有相似的时延,不同多普勒的主要反射体构成的特殊信道的时延多普勒信道表示。
Signal Representation in Delay-Doppler
The delay-Doppler signal representation is mathematically subtler and requires the introduction of a new class of functions called quasi-periodic functions. To this end, we choose a delay period
τ
r
\tau_r
τr and a Doppler period
ν
r
\nu_r
νr satisfying the condition
τ
r
⋅
ν
r
=
1
\tau_r\cdot\nu_r=1
τr⋅νr=1, A delay-Doppler signal is a function
ϕ
(
τ
,
ν
)
\phi(\tau,\nu)
ϕ(τ,ν) that satisfies the following quasi-periodicity condition
ϕ
(
τ
+
n
τ
r
,
ν
+
m
ν
r
)
=
e
j
2
π
(
n
ν
τ
r
−
m
τ
ν
r
)
ϕ
(
τ
,
ν
)
\phi(\tau+n\tau_r,\nu+m\nu_r)=e^{j2\pi(n\nu\tau_r-m\tau\nu_r)}\phi(\tau,\nu)
ϕ(τ+nτr,ν+mνr)=ej2π(nντr−mτνr)ϕ(τ,ν)
为了表示信号引入了一个准周期函数,满足
τ
r
⋅
ν
r
=
1
\tau_r\cdot\nu_r=1
τr⋅νr=1,这样时延多普勒信号
ϕ
(
τ
,
ν
)
\phi(\tau,\nu)
ϕ(τ,ν)满足
ϕ
(
τ
+
n
τ
r
,
ν
+
m
ν
r
)
=
e
j
2
π
(
n
ν
τ
r
−
m
τ
ν
r
)
ϕ
(
τ
,
ν
)
\phi(\tau+n\tau_r,\nu+m\nu_r)=e^{j2\pi(n\nu\tau_r-m\tau\nu_r)}\phi(\tau,\nu)
ϕ(τ+nτr,ν+mνr)=ej2π(nντr−mτνr)ϕ(τ,ν)其中每次遍历时延周期
τ
r
\tau_r
τr得到相位因子
e
j
2
π
ν
τ
r
e^{j2\pi\nu\tau_r}
ej2πντr,对应的,每次遍历多普勒周期
ν
r
\nu_r
νr得到相位因子
e
−
j
2
π
τ
ν
r
e^{-j2\pi\tau\nu_r}
e−j2πτνr
Conversion among different representation
The conversion between the time and frequency representations is carried through the Fourier transform. The conversion between the delay-Doppler and the time and frequency representations is carried by the Zak transforms
Z
t
Z_t
Zt and
Z
f
Z_f
Zf respectively, The Zak
transforms are realized by means of periodic Fourier integration formulas
时间转换到频率是傅里叶变换,时延多普勒表示转换成时间、频率表示通过Zak变换,Zak变换通过周期傅里叶积分公式实现:
Z
t
(
ϕ
)
=
∫
0
ν
r
e
j
2
π
t
ν
ϕ
(
t
,
ν
)
d
ν
Z_t(\phi)=\int_0^{\nu_r}e^{j2\pi t\nu}\phi(t,\nu)d\nu
Zt(ϕ)=∫0νrej2πtνϕ(t,ν)dν
Z
f
(
ϕ
)
=
∫
0
−
τ
r
e
j
2
π
t
ν
ϕ
(
τ
,
f
)
d
τ
Z_f(\phi)=\int_0^{-\tau_r}e^{j2\pi t\nu}\phi(\tau,f)d\tau
Zf(ϕ)=∫0−τrej2πtνϕ(τ,f)dτ准周期条件在二维到一维的变换过程中是很重要的,否则一个信号的时延多普勒表示是无限多的。
Z
t
(
ϕ
)
Z_t(\phi)
Zt(ϕ)是信号的时间表示?
Z
f
(
ϕ
)
Z_f(\phi)
Zf(ϕ)是信号的频率表示?
这个部分和之前看的paper的动不动就来的二重积分好像不一致。