The Delay-Doppler Signal Representation(时移多普勒信号表示)(3)

31 篇文章 1 订阅
14 篇文章 45 订阅

Channel Representation in Delay-Doppler

In communication, they are used to represent channels by means of a superposition of time and frequency shift operations.Figure 2, shows an example of the delay-Doppler representation of a specific channel which is composed of two main reflectors which share similar delay (range) but differ in their Doppler characteristic (velocities).
在通信中,我们通过时间和频率变换操作的叠加来表示信道。下图展示的是两个有相似的时延,不同多普勒的主要反射体构成的特殊信道的时延多普勒信道表示。
在这里插入图片描述

Signal Representation in Delay-Doppler

The delay-Doppler signal representation is mathematically subtler and requires the introduction of a new class of functions called quasi-periodic functions. To this end, we choose a delay period τ r \tau_r τr and a Doppler period ν r \nu_r νr satisfying the condition τ r ⋅ ν r = 1 \tau_r\cdot\nu_r=1 τrνr=1, A delay-Doppler signal is a function ϕ ( τ , ν ) \phi(\tau,\nu) ϕ(τ,ν) that satisfies the following quasi-periodicity condition ϕ ( τ + n τ r , ν + m ν r ) = e j 2 π ( n ν τ r − m τ ν r ) ϕ ( τ , ν ) \phi(\tau+n\tau_r,\nu+m\nu_r)=e^{j2\pi(n\nu\tau_r-m\tau\nu_r)}\phi(\tau,\nu) ϕ(τ+nτr,ν+mνr)=ej2π(nντrmτνr)ϕ(τ,ν)
为了表示信号引入了一个准周期函数,满足 τ r ⋅ ν r = 1 \tau_r\cdot\nu_r=1 τrνr=1,这样时延多普勒信号 ϕ ( τ , ν ) \phi(\tau,\nu) ϕ(τ,ν)满足 ϕ ( τ + n τ r , ν + m ν r ) = e j 2 π ( n ν τ r − m τ ν r ) ϕ ( τ , ν ) \phi(\tau+n\tau_r,\nu+m\nu_r)=e^{j2\pi(n\nu\tau_r-m\tau\nu_r)}\phi(\tau,\nu) ϕ(τ+nτr,ν+mνr)=ej2π(nντrmτνr)ϕ(τ,ν)其中每次遍历时延周期 τ r \tau_r τr得到相位因子 e j 2 π ν τ r e^{j2\pi\nu\tau_r} ej2πντr,对应的,每次遍历多普勒周期 ν r \nu_r νr得到相位因子 e − j 2 π τ ν r e^{-j2\pi\tau\nu_r} ej2πτνr

Conversion among different representation

在这里插入图片描述
The conversion between the time and frequency representations is carried through the Fourier transform. The conversion between the delay-Doppler and the time and frequency representations is carried by the Zak transforms Z t Z_t Zt and Z f Z_f Zf respectively, The Zak
transforms are realized by means of periodic Fourier integration formulas
时间转换到频率是傅里叶变换,时延多普勒表示转换成时间、频率表示通过Zak变换,Zak变换通过周期傅里叶积分公式实现: Z t ( ϕ ) = ∫ 0 ν r e j 2 π t ν ϕ ( t , ν ) d ν Z_t(\phi)=\int_0^{\nu_r}e^{j2\pi t\nu}\phi(t,\nu)d\nu Zt(ϕ)=0νrej2πtνϕ(t,ν)dν Z f ( ϕ ) = ∫ 0 − τ r e j 2 π t ν ϕ ( τ , f ) d τ Z_f(\phi)=\int_0^{-\tau_r}e^{j2\pi t\nu}\phi(\tau,f)d\tau Zf(ϕ)=0τrej2πtνϕ(τ,f)dτ准周期条件在二维到一维的变换过程中是很重要的,否则一个信号的时延多普勒表示是无限多的。
Z t ( ϕ ) Z_t(\phi) Zt(ϕ)是信号的时间表示? Z f ( ϕ ) Z_f(\phi) Zf(ϕ)是信号的频率表示?
这个部分和之前看的paper的动不动就来的二重积分好像不一致。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值