深度学习中的特征融合方式

深度学习中的特征融合方式主要包括concat和add两种操作。‌

  • Concat操作:‌这是一种通道数的增加方式,‌意味着图像本身的特征数(‌通道数)‌增加了,‌而每一特征下的信息没有增加,‌主要实现横向或纵向空间上的叠加。‌Concat操作将原始特征直接拼接,‌让网络去学习如何融合特征,‌这个过程中信息不会损失。‌它相当于对原始特征进行人为的特征融合,‌选择的特征处理操作是element-wise concat。‌Concat操作带来的计算量较大,‌如果明确原始特征的关系可以使用add操作融合的话,‌使用add操作可以节省计算代价。‌

  • Add操作:‌这是一种简单的像素叠加方式,‌描述的是图像的特征下的信息量增多了,‌但描述图像的维度本身并没有增加,‌只是每一维下的信息量在增加。‌Add操作相当于加入一种先验知识,‌对原始特征进行人为的特征融合,‌通过add操作会得到新的特征,‌这个新的特征可以反映原始特征的一些特性,‌但是原始特征的一些信息也会在这个过程中损失。‌Add操作是concat的一种特殊情况,‌但在明确原始特征的关系可以使用add操作融合的情况下,‌使用add操作可以节省计算代价。‌

此外,‌还有一些特定的特征融合方法,‌如自适应空间特征融合(‌ASFF)‌,‌它学习在空间上过滤冲突信息以抑制梯度反传时的不一致性,‌从而改善特征的比例不变性,‌并降低推理开销。‌ASFF策略通过为来自不同层的特征乘上权重参数并相加,‌实现自适应融合效果,‌类似于全连接参数。‌这种方法在解决目标检测尺度变化挑战中表现出色,‌提高了模型的性能。‌

1. 作用和注意事项

1.1. Concate

作用:Concate操作用于将两个或多个张量在某个维度上连接在一起,生成一个更大的张量。这可以用于在深度学习模型中增加通道数或特征维度,以便在后续层中更好地捕获不同特征之间的关系。

示例:在卷积神经网络中,特征图通常具有形状为(batch_size, channels, height, width),如果要在通道维度上连接两个特征图,可以使用concatenate操作,结果将是形状为(batch_size, channels1 + channels2, height, width)的特征图。

注意:在连接时,两个张量的维度(除了连接维度)必须保持一致。例如,在通道维度上连接时,其他维度的尺寸必须相同。

1.2. Add

作用:Add操作用于将两个张量逐元素相加在一起,生成一个新的张量。这可以用于实现跳跃连接(skip connection)或残差连接(residual connection),以促进梯度的流动,提高训练稳定性,以及在深层网络中减少梯度消失问题。

示例:在残差网络(ResNet)中,残差块的输入特征与残差块的输出特征被相加在一起,以生成最终的块输出。这有助于网络在训练时更容易地学习恒等映射。

注意:相加操作要求相加的张量具有相同的形状,因为它们是逐元素相加的。

2. 直观理解

从图中可以发现,concat每个通道对应着对应的卷积核。而add形式则将对应的特征图相加,在进行卷积操作,相当于加了一个先验:对应通道的特征图语义类似,从而对应的特征图共享一个卷积核。因此add可以认为是特殊的concat形式。但是add的计算量要比concat的计算量小得多。 

2.1. concat作用

concat是通道数的增加,也就是说描述图像本身的特征数(通道数)增加了,而每一特征下的信息是没有增加;横向或纵向空间上的叠加。

2.2. add作用

add为简单的像素叠加,是描述图像的特征下的信息量增多了,但是描述图像的维度本身并没有增加,只是每一维下的信息量在增加,这显然是对最终的图像的分类是有益的。

add操作经典代表网络是ResNet,concate操作经典代表网络是Inception系统网络中的Inception结构和DenseNet。

add操作相当于加入一种先验知识。我觉得也就是相当于你对原始特征进行人为的特征融合。而你选择的特征处理的操作是element-wise add。通过add操作,会得到新的特征,这个新的特征可以反映原始特征的一些特性,但是原始特征的一些信息也会在这个过程中损失。

但是concate就是将原始特征直接拼接,让网络去学习,应该如何融合特征,这个过程中信息不会损失。

add其实是concate的一种特殊情况。但是concate带来的计算量较大,在明确原始特征的关系可以使用add操作融合的话,使用add操作可以节省计算代价。

3. 数学表达

对于两路输入来说,如果是通道数相同且后面带卷积的话,add等价于concat之后对应通道共享同一个卷积核。下面具体用式子解释一下。由于每个输出通道的卷积核是独立的,我们可以只看单个通道的输出。假设两路输入的通道分别为X_1, X_2, \hdots, X_cY_1, Y_2, \hdots, Y_c。那么concat的单个输出通道为(*表示卷积):

Z_{\text {concat }}=\sum_{i=1}^c X_i * K_i+\sum_{i=1}^c Y_i * K_{i+c}

而add的单个输出通道为:

Z_{\text {add }}=\sum_{i=1}^c\left(X_i+Y_i\right) * K_i=\sum_{i=1}^c X_i * K_i+\sum_{i=1}^c Y_i * K_i

因此add相当于加了一种prior,当两路输入可以具有“对应通道的特征图语义类似”(可能不太严谨)的性质的时候,可以用add来替代concat,这样更节省参数和计算量(concat是add的2倍)。FPN里的金字塔,是希望把分辨率最小但语义最强的特征图增加分辨率从性质上是可以用add的。如果用concat,因为分辨率小的特征通道数更多,计算量是一笔不少的开销。

CPN[2]为了进一步减少计算量,对于分辨率小的特征图在add前用1x1的卷积减少了通道数。

有一个例子是ResNet[4]的skip connection。这里的add主要是为了保持mapping的identity性质,使梯度回传得更加容易。同样的操作在LSTM[5]里的cell state也能看到。

当然,如果不在乎计算量且数据足够的时候,用concat也是可以的,因为这两个本身就是包含关系。实际上concat在skip connection里用的也比add更普遍,比如U-Net[6]、DenseNet[7]。

4. 其他理解

concatenate和add可以相互转化

concat是肯定是计算量大于element-wise add的,但个人认为,concat避免了直接add对信息造成的负面影响。而且逐元素加和的方式要求不同层的feature map具有完全一致的channel数量,而cancat不受channel数量的限制(yolov3里就是concat,做concat操作的两层通道数不同)。

Resnet,Densenet等神经网络中,常常采用add来连接特征层,Unet中常常采用concatenate。因为Unet是做图像分割的,图像分割是像素级分类,对特征的数量要求很高。而add是在一个特征上增加其语义信息,举个例子,一张脸,没有通过add话,你可能只会看到眼睛,通过add后你可以看见鼻子,眉毛,这样就可以增加置信度更好的判断这个人是谁,从而增加目标检测的准确率。

参考文献

深度学习中的特征融合方式(add/concate)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值