【Python】Picture`s Alpha Analyze

# from PIL import Image
# import numpy as np
#
# # 读取图片(确保图片路径正确)
# image_path = '2/0001.png'
# img = Image.open(image_path).convert("RGBA")
#
# # 将图片转换为NumPy数组,方便数据分析
# data = np.array(img)
#
# # 提取透明通道(即Alpha通道)
# alpha_channel = data[:, :, 3]
#
# # 分析透明通道的特性
# # 1. 计算透明通道的最小值、最大值和平均值
# alpha_min = alpha_channel.min()
# alpha_max = alpha_channel.max()
# alpha_mean = alpha_channel.mean()
#
# # 2. 统计完全透明(0值)和完全不透明(255值)的像素数量
# transparent_pixels = np.sum(alpha_channel == 0)
# opaque_pixels = np.sum(alpha_channel == 255)
# total_pixels = alpha_channel.size
#
# # 输出分析结果
# print(f"Alpha通道最小值: {alpha_min}")
# print(f"Alpha通道最大值: {alpha_max}")
# print(f"Alpha通道平均值: {alpha_mean:.2f}")
# print(f"完全透明的像素数量: {transparent_pixels} ({(transparent_pixels / total_pixels) * 100:.2f}%)")
# print(f"完全不透明的像素数量: {opaque_pixels} ({(opaque_pixels / total_pixels) * 100:.2f}%)")
#
# print("\n")

from PIL import Image
import numpy as np
for i in range(10, 33):
    # 读取图片(确保图片路径正确)
    image_path = '5/00{}.png'.format(i)
    img = Image.open(image_path).convert("RGBA")

    # 将图片转换为NumPy数组,方便数据分析
    data = np.array(img)

    # 提取透明通道(即Alpha通道)
    alpha_channel = data[:, :, 3]

    # 分析透明通道的特性
    # 1. 计算透明通道的最小值、最大值和平均值
    alpha_min = alpha_channel.min()
    alpha_max = alpha_channel.max()
    alpha_mean = alpha_channel.mean()

    # 2. 统计完全透明(0值)和完全不透明(255值)的像素数量
    transparent_pixels = np.sum(alpha_channel == 0)
    opaque_pixels = np.sum(alpha_channel == 255)
    total_pixels = alpha_channel.size

    # 输出分析结果
    print(f"Alpha通道最小值: {alpha_min}")
    print(f"Alpha通道最大值: {alpha_max}")
    print(f"Alpha通道平均值: {alpha_mean:.2f}")
    print(f"完全透明的像素数量: {transparent_pixels} ({(transparent_pixels / total_pixels) * 100:.2f}%)")
    print(f"完全不透明的像素数量: {opaque_pixels} ({(opaque_pixels / total_pixels) * 100:.2f}%)")


print("\n")

# from PIL import Image
# import numpy as np
#
# # 读取图片(确保图片路径正确)
# image_path = '5/0001.png'
# img = Image.open(image_path).convert("RGBA")
#
# # 将图片转换为NumPy数组,方便数据分析
# data = np.array(img)
#
# # 提取透明通道(即Alpha通道)
# alpha_channel = data[:, :, 3]
#
# # 分析透明通道的特性
# # 1. 计算透明通道的最小值、最大值和平均值
# alpha_min = alpha_channel.min()
# alpha_max = alpha_channel.max()
# alpha_mean = alpha_channel.mean()
#
# # 2. 统计完全透明(0值)和完全不透明(255值)的像素数量
# transparent_pixels = np.sum(alpha_channel == 0)
# opaque_pixels = np.sum(alpha_channel == 255)
# total_pixels = alpha_channel.size
#
# # 输出分析结果
# print(f"Alpha通道最小值: {alpha_min}")
# print(f"Alpha通道最大值: {alpha_max}")
# print(f"Alpha通道平均值: {alpha_mean:.2f}")
# print(f"完全透明的像素数量: {transparent_pixels} ({(transparent_pixels / total_pixels) * 100:.2f}%)")
# print(f"完全不透明的像素数量: {opaque_pixels} ({(opaque_pixels / total_pixels) * 100:.2f}%)")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RockWang.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值