【控制理论】【数学基础】为什么说对于dX=AX系统,A的特征值在右半平面系统不稳定

对于系统 x ˙ ( t ) = A x ( t ) \dot x(t) =Ax(t) x˙(t)=Ax(t)
则有: x ( t ) = e A t x ( 0 ) x(t) = e^{At}x(0) x(t)=eAtx(0)

在这里插入图片描述
所以要想判定稳定与否,关键看的收敛情况!

接下来就分析 e A t e^{At} eAt

应用凯莱-哈密顿定理(n×n系统矩阵A满足它自身的特征方程):

若A的特征方程为:

在这里插入图片描述

而矩阵A满足其自身的特征方程,即和A可互换:
在这里插入图片描述上式表明 A n + 1 A^{n+1} An+1亦是 A n − 1 A^{n-1} An1,…, A A A, I I I的线性组合,以此类推, A n + 2 A^{n+2} An+2 A n + 3 A^{n+3} An+3等均可由 A n − 1 A^{n-1} An1,…, A A A, I I I的线性组合来取代。

由此我们可以对进行转化:

在这里插入图片描述中高于(n-1)幂次的项均可由 A n − 1 A^{n-1} An1,…, A A A, I I I来表示。如此一来, e A t e^{At} eAt由一个A的无穷幂级数(开放形式)化为一个A的最高幂次为(n-1)的n项幂级数(闭合形式):

在这里插入图片描述

接下来我们确定这些系数,以便看清 e A t e^{At} eAt的具体形式:

假设矩阵A的n个特征值为 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2,… λ n \lambda_n λn
再一次应用凯莱-哈密顿定理(A和在等式中可以互换),则有
在这里插入图片描述

由此看出 α 0 ( t ) \alpha_0(t) α0(t) α 1 ( t ) \alpha_1(t) α1(t) α n − ( t ) \alpha_{n-}(t) αn(t)系数均为 e λ 1 t , e λ 2 t . . . . e λ n t e^{\lambda_1t},e^{\lambda_2t}....e^{\lambda_nt} eλ1t,eλ2t....eλnt,的线性组合。因此,矩阵 e A t e^{At} eAt内部各元素也均为 e λ 1 t , e λ 2 t . . . . e λ n t e^{\lambda_1t},e^{\lambda_2t}....e^{\lambda_nt} eλ1t,eλ2t....eλnt的线性组合。

x ( t ) = e A t x ( 0 ) x(t)=e^{At}x(0) x(t)=eAtx(0),要使得系统稳定,即 x ( t ) x(t) x(t)在t趋于无穷时收敛到0,必须保证 e λ 1 t , e λ 2 t . . . . e λ n t e^{\lambda_1t},e^{\lambda_2t}....e^{\lambda_nt} eλ1t,eλ2t....eλnt,能够收敛到0. 故A的特征根必须在左半平面,若存在右半平面的特征根 λ i \lambda_i λi,必然会导致不稳定的运动模态 e λ i t e^{\lambda_it} eλit

PS.
来自远哥的解释(tql),MSC各个都是人才没错了

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值