ceres简介
Ceres solver 是谷歌开发的一款用于非线性优化的库,在谷歌的开源激光雷达slam项目cartographer中被大量使用。
本篇博客结合相关实例介绍一下 Ceres库 的基本使用方法:
使用Ceres求解非线性优化问题,一共分为三个部分:
1、 **第一部分:**构建cost fuction,即代价函数,也就是寻优的目标式。这个部分需要使用仿函数(functor)这一技巧来实现,做法是定义一个cost function的结构体,在结构体内重载()运算符实现。
2、 **第二部分:**通过代价函数构建待求解的优化问题。
3、 **第三部分:**配置求解器参数并求解问题,这个步骤就是设置方程怎么求解、求解过程是否输出等,然后调用一下Solve方法。
实例分析
1)ceres求解最小值
案例一先看一个比较简单的案例,为Ceres官网教程给出的例程中:
使用ceres求取函数的最小值(很容易心算出x的解应该是10)
我使用的是Ubuntu20.04进行源码编译,为了让大家可自己动手编译实现,要在CMakeList.txt中添加:
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})
add_executable(ceretest src/ceretest.cpp)
target_link_libraries(ceretest ${CERES_LIBRARIES})
源码:
#include <iostream>
#include <ceres/ceres.h>
using namespace std;
using namespace ceres;
//第一部分:构建代价函数
struct CostFunctor {
template <typename T>
//operators是一种模板方法,其假定所的输入输出都变为T的格式
//其中x为带估算的参数,residual是残差
bool operator()(const T* const x, T* residual) const {
residual[0] = T(10.0) - x[0]; //这里的T[10.0],可以将10 转换位所需的T格式,如double,Jet等
return true;
}
};
//主函数
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
// 寻优参数x的初始值,为5
double initial_x = 5.0;
double x = initial_x;
// 第二部分:构建寻优问题
Problem problem;
CostFunction* cost_function =
new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor); //使用自动求导,将之前的代价函数结构体传入,第一个1是输出维度,即残差的维度,第二个1是输入维度,即待寻优参数x的维度。
problem.AddResidualBlock(cost_function, NULL, &x); //向问题中添加误差项,本问题比较简单,添加一个就行。
//第三部分: 配置并运行求解器
Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR; //配置增量方程的解法,使用得是稠密的QR分解方式
options.minimizer_progress_to_stdout = true;//输出到cout
Solver::Summary summary;//优化信息
Solve(options, &problem, &summary);//求解!!!
std::cout << summary.BriefReport() << "\n";//输出优化的简要信息
//最终结果
std::cout << "x : " << initial_x
<< " -> " << x << "\n";
return 0;
}
结果为:
Solve简要介绍:
使用ceres::Solve进行求解,其函数原型如下:
void Solve(const Solver::Options& options, Problem* problem, Solver::Summary* summary)
options:求解器的配置,求解的配置选项
problem:求解的问题,也即我们构建的最小二乘问题
summary:求解的优化信息,用于存储求解过程中的优化信息
对求解器的配置做如下说明:
Solver::Summary
Solver::Summary为求解器以及各个变量的信息,常用成员函数如下:
BriefReport():输出单行的简单总结;
FullReport():输出多行的完整总结。
2)ceres拟合曲线,(Curve Fitting)实现
有了上面的基础,现在用ceres来拟合非线性曲线,进阶一下:
整个代码的思路还是先构建代价函数结构体,然后在[0,1]之间均匀生成待拟合曲线的1000个数据点,加上方差为1的白噪声,数据点用两个vector储存(x_data和y_data),然后构建待求解优化问题,最后求解,拟合曲线参数。
(PS. 本段代码中使用OpenCV的随机数产生器,要跑代码的同学可能要先装一下OpenCV)
先给出代码:
#include<iostream>
#include<opencv2/opencv.hpp>
#include<ceres/ceres.h>
using namespace std;
using namespace cv;
//构建代价函数结构体,abc为待优化参数,residual为残差。
struct CURVE_FITTING_COST
{
CURVE_FITTING_COST(double x,double y):_x(x),_y(y){}
template <typename T>
bool operator()(const T* const abc,T* residual)const
{
residual[0]=_y-ceres::exp(abc[0]*_x*_x+abc[1]*_x+abc[2]);
return true;
}
const double _x,_y;
};
//主函数
int main()
{
//参数初始化设置,abc初始化为0,白噪声方差为1(使用OpenCV的随机数产生器)。
double a=3,b=2,c=1;
double w=1;
RNG rng;
double abc[3]={0,0,0};
//生成待拟合曲线的数据散点,储存在Vector里,x_data,y_data。
vector<double> x_data,y_data;
for(int i=0;i<1000;i++)
{
double x=i/1000.0;
x_data.push_back(x);
y_data.push_back(exp(a*x*x+b*x+c)+rng.gaussian(w));
}
//反复使用AddResidualBlock方法(逐个散点,反复1000次)
//将每个点的残差累计求和构建最小二乘优化式
//不使用核函数,待优化参数是abc
ceres::Problem problem;
for(int i=0;i<1000;i++)
{
//自动求导法,输出维度1,输入维度3,
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<CURVE_FITTING_COST,1,3>(
new CURVE_FITTING_COST(x_data[i],y_data[i])
),
nullptr,
abc
);
}
//配置求解器并求解,输出结果
ceres::Solver::Options options;
options.linear_solver_type=ceres::DENSE_QR;
options.minimizer_progress_to_stdout=true;
ceres::Solver::Summary summary;
ceres::Solve(options,&problem,&summary);
cout<<"a= "<<abc[0]<<endl;
cout<<"b= "<<abc[1]<<endl;
cout<<"c= "<<abc[2]<<endl;
return 0;
}
这里由于有1000个点,所以需要对每个点计算一次残差,将所有残差累积在一起构成问题的总体优化目标,所以for循环1000次。
这里与前例不同的是需要输入散点的坐标x,y,由于_x,_y是结构体成员变量,所以可以通过构造函数直接对这两个值赋值。本代码里也是这么用的。
最终的运行结果是:
可以看到,最终的拟合结果与真实值非常接近。
求解优化问题中(比如拟合曲线),数据中往往会有离群点、错误值什么的,最终得到的寻优结果很容易受到影响,此时就可以使用一些损失核函数来对离群点的影响加以消除。要使用核函数,只需要把上述代码中的NULL或nullptr换成损失核函数结构体的实例。
Ceres库中提供的核函数主要有:TrivialLoss 、HuberLoss、 SoftLOneLoss 、 CauchyLoss。
比如此时要使用CauchyLoss,只需要将nullptr换成new CauchyLoss(0.5)就行(0.5为参数)。
上述例子重新运行后结果:
下面两图别为Ceres官网上的例程的结果,可以明显看出使用损失核函数之后的曲线收离群点的影响更小。