目前行业内常见的深度学习计算框架先驱(Tensorflow、Caffe、pytorch、mxnet等)五花八门,各种各样的都有,B站上有大佬手搓了一个自己深度学习框架,只要满足信息前向传递,误差反向传导即可。最早的开源深度学习框架,为整个AI产业赋能,大大推动了整个行业的发展,优点是同时支持训练和推理、跨平台、开源社区力量强大、框架迭代开发快等,能够满足大部分企业的需求,但是在端侧部署存在以下问题,对移动端处理器(CPU、GPU、DSP)的优化有限,限制了一些算力要求较高的AI算法在端侧的应用。
想要将训练好的模型运行在特定的端侧环境,硬件厂商比如高通、联发科、三星、英伟达等,为了发挥展示自家芯片的AI能力,都会推出自己的计算框架,如SNPE、NeuroPilot、Eden、TensorRT,还有国内的各宣称自己造芯的厂商,比如vivo的VCAP,华为的麒麟和升腾系列,地平线的征程系列等,这些框架的特点是,只做推理,支持Tensorlfow、Caffe,onnx等模型的转换,对于自家的GPU、DSP、NPU都做了深度的优化,但对CPU几乎不优化(其