基于IMU的车辆姿态和横向速度估计

基于IMU的车辆姿态和横向速度估计

原文见《Automated Vehicle Attitude and Lateral Velocity Estimation Using A 6-D IMU Aided by Vehicle Dynamics 》,作者Xin Xia, Lu Xiong, Wei Liu and Zhuoping Yu

1.摘要:

本文提出了一种利用车辆动力学辅助的六自由度惯性测量单元(IMU)进行自动车辆姿态和横向速度估计的方法。这种估计方法充分利用了IMU和车辆动力学的优点,可以在不借助GNSS或摄像头等外界信息的情况下自主运行。摘要基于卡尔曼滤波理论,提出了基于运动模型的俯仰角姿态观测器、基于运动模型的侧向速度观测器和基于车辆动力学的动态模型观测器。在小激励条件下,基于动态模型的观测器的侧移速度估计更可靠,并将其转发给两个基于运动模型的观测器以避免累积估计误差。在较大的激励条件下,两种基于运动学模型的观测器均以开环方式运行。通过回转机动和双变道机动对估计方法进行了验证。实验结果证明了该估计方法的有效性。

2.主要方法介绍

如前所述,本文件已发展了三个观察员。对于两种基于运动模型的观测器,在小侧向激励机动中,利用基于动态模型的观测器的侧向速度去除sya中的平移加速度部分。由于本文着重于姿态和横向速度的估计,对于纵向速度,我们假设在较小的纵向加速度下,可以通过车轮速度传感器获得纵向速度。然后,我们提出如图1和图2所示的流程图,以检测基于动态模型的观测器的侧方速度用于滚转角反馈和基于运动模型的侧方速度估计的准确时间,根据式(6),基于运动模型的观测器可将来自车轮速度传感器的纵向速度用于俯仰角和纵向速度反馈时,图1给出了滚转角和俯仰角反馈机制,图2给出了纵向和横向速度反馈机制。在这里插入图片描述
对于两种基于运动模型的观测器,在小侧向激励机动中,利用基于动态模型的观测器的侧向速度去除sya中的平移加速度部分。由于本文着重于姿态和横向速度的估计,对于纵向速度,我们假设在较小的纵向加速度下,可以通过车轮速度传感器获得纵向速度。然后,我们提出如图1和图2所示的流程图,以检测基于动态模型的观测器的侧方速度用于滚转角反馈和基于运动模型的侧方速度估计的准确时间,根据式(6),基于运动模型的观测器可将来自车轮速度传感器的纵向速度用于俯仰角和纵向速度反馈时,图1给出了滚转角和俯仰角反馈机制,图2给出了纵向和横向速度反馈机制;
 t1 和 t2的 累积 时间 变量, T1 和 T2 为 阈 值 时间 ,用来判断 车辆 是否 在 小 机动;a0 是加速度总的阈值acceleration,. 获得在这里插入图片描述
t1 和 t2的 累积 时间 变量, T1 和 T2 为 阈 值 时间 ,用来判断 车辆 是否 在 小 机动;a0 是加速度总的阈值;

3.结论与未来工作

本文提出了一种自动驾驶车辆姿态和横向速度的估计方法。该方法融合了6自由度集成的IMU和车辆动力学信息,不需要额外的信息就可以自主运行。考虑IMU和车辆动力学的互补特性,我们设计了三种观测器:基于运动学模型的姿态估计观测器、基于运动学模型的侧向速度估计观测器和基于车辆动力学的侧向速度估计观测器。在小激励条件下,基于车辆动力学的观测器的速度对两种基于运动学模型的观测器都是有价值的,并作为反馈项对基于运动学模型的姿态观测器和侧向速度观测器进行了修正。在较大的激励下,基于运动学模型的观测器在没有车辆动力学观测器辅助的情况下自主运行。通过激流回旋和DLC在临界条件下的机动,验证了该估计方法的有效性。但是,由于在大的条件下,两个基于运动学模型的观测器在没有其他传感器辅助的情况下在开环中运行,其估计性能取决于IMU的精度,不可避免地会出现累积误差。在今后的工作中,我们将重点研究如何在短周期内融合更多的信息,进一步提高开环估计的精度。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读