Stability AI 联合 UIUC 提出单视图 3D 重建方法SPAR3D,可0.7秒完成重建并支持交互式用户编辑。

Stability AI 联合 UIUC 提出一种简单而有效的单视图 3D 重建方法 SPAR3D,这是一款最先进的 3D 重建器,可以从单视图图像重建高质量的 3D 网格。SPAR3D 的重建速度很快,只需 0.7 秒,并支持交互式用户编辑。

相关链接

  • 论文:http://arxiv.org/abs/2501.04689v1

  • 主页:https://spar3d.github.io

  • 代码:https://github.com/Stability-AI/stable-point-aware-3d

论文介绍

我们研究单图像 3D 物体重建问题。最近的研究分为两个方向:基于回归的建模和生成建模。回归方法可以有效地推断可见表面,但在处理遮挡区域时会遇到困难。生成方法通过建模分布可以更好地处理不确定区域,但计算成本高,并且生成通常与可见表面不一致。在本文中,我们提出了 SPAR3D,这是一种新颖的两阶段方法,旨在兼顾两个方向的优点。

SPAR3D 的第一阶段使用轻量级点扩散模型生成稀疏 3D 点云,该模型具有快速的采样速度。第二阶段使用采样点云和输入图像来创建高度详细的网格。我们的两阶段设计能够对不适定的单图像 3D 任务进行概率建模,同时保持高计算效率和出色的输出保真度。使用点云作为中间表示进一步允许交互式用户编辑。经过在不同数据集上的评估,SPAR3D 表现出比以前最先进的方法更优异的性能,推理速度为 0.7 秒。

方法

SPAR3D 概述。 根据输入图像,SPAR3D 首先利用点扩散模型生成稀疏点云。然后,三平面变换器使用采样点云和图像特征来生成高分辨率三平面特征。然后查询三平面特征以重建图像中对象的几何形状、纹理和照明。

可微分渲染器概述。 我们从三平面估计几何、反照率、照明和法线贴图,并从图像中估计金属/粗糙度值。我们将这些值栅格化并插值作为着色器的输入(此处为简单起见省略)。我们的着色器使用 Disney BRDF并执行蒙特卡洛积分。我们进一步执行可见性测试以改进阴影建模。最后,我们将渲染图像与 GT 图像进行比较,并尽量减少渲染损失。

阴影建模。 我们通过沿采样光线行进在屏幕空间中执行可见性测试。如果光线上的任何点的光线深度比深度图更远,我们将整个光线视为阴影。

结果

定性比较

更多结果

结论

SPAR3D是一种简单而有效的单视图 3D 重建方法。模型的核心是基于点采样的两阶段设计。首先通过点扩散生成稀疏点云,然后从点云和图像重建高度详细的网格。这种设计能够充分利用基于回归和生成建模的优势。根据标准基准和野外图像进行评估,SPAR3D 的表现明显优于之前最先进的方法,推理速度快。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC Studio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值