🐫 CAMEL 是一个致力于寻找代理扩展规律的开源社区。我们相信,大规模研究这些代理可以深入了解它们的行为、能力和潜在风险。为了促进该领域的研究,我们实现并支持各种类型的代理、任务、提示、模型和模拟环境。
相关链接
-
代码:https://github.com/camel-ai/camel
CAMEL框架设计原则
🧬 可进化性
该框架使多智能体系统能够通过生成数据和与环境交互不断演进。这种演进可以通过具有可验证奖励的强化学习或监督学习来推动。
📈 可扩展性
该框架旨在支持具有数百万代理的系统,确保大规模高效协调、通信和资源管理。
💾 状态性
代理维护状态记忆,使它们能够与环境执行多步骤交互并有效地处理复杂的任务。
📖 代码即提示
每行代码和注释都是代理的提示。代码应该写得清晰易读,确保人类和代理都能有效地理解它。
CAMEL是一个社区驱动的研究集体,由 100 多名研究人员组成,致力于推动多智能体系统的前沿研究。世界各地的研究人员基于以下原因选择 CAMEL 进行研究。
CAMEL可以做什么
CAMEL技术栈
快速入门
由于 CAMEL 可以在 PyPI 上使用,因此安装起来非常简单。只需打开终端并运行:
pip install camel-ai
有关更详细的说明和其他配置选项,请查看安装部分。
运行后,您可以在www.docs.camel-ai.org上探索我们的 CAMEL Tech Stack 和 Cookbooks ,以构建强大的多智能体系统。