题目:NDT-transformer: large-scale 3D point cloud localization using the Normal distribution transform representation
来源:谢菲尔德大学
期刊:ICRA2021
摘要:
基于三维点云的位置识别是自动驾驶在gps环境下的高要求,是基于激光雷达的SLAM系统的重要组成部分(如环封检测)。本文提出了一种基于三维点云的实时、大规模地点识别方法——NDT-Transformer。具体来说,3D正态分布变换(NDT)表示用于将原始的、密集的3D点云压缩为概率分布(NDT单元),以提供几何形状描述。然后,一个新的NDT- transformer网络从一组3D NDT单元表示学习全局描述符。得益于NDT表示和NDT- transformer网络,学习到的全局描述符具有丰富的几何信息和上下文信息。最后,使用查询数据库实现位置识别的描述符检索。与最先进的方法相比,所提出的方法在牛津机器人汽车基准上平均提高了7.52%的前1召回率和2.73%的前1%召回率。开源网址:https://github.com/dachengxiaocheng/NDT-Transformer.git
主要贡献:
1)提出了一种计算效率高的大规模点云定位方法,其中NDT作为中间表示。我们的方法将密集的点云压缩成一个轻量级的表示,最大限度地保留几何特征;
2)设计了一种新的神经网络结构NDT- transformer,用于从一组3D NDT单元表示中学习具有上下文线索的全局描述符;
3)该方法在基于点云的位置识别中取得了最先进的性能,可以作为基于NDT的SLAM和蒙特卡罗定位方法的重要补充。
设计方法图示:
如图1所示,作者将所有点云表示为固定数量的3D NDT单元(如图2所示),并利用NDT- transformer将它们转换为特定于站点的全局描述符。此外,为了保证实时性能,只需要在线计算查询描述符,而数据库中的其他描述符则离线计算并存储在内存中。
网络结构:
结果对比: