两位清华天才Yao Shunyu投身大模型,跨学科人才或将成为AI时代“香饽饽”

近日,清华两位不同专业的Yao Shunyu,都选择了大模型领域。一名出身物理系,一名出身计算机系,看似八竿子打不着,却都能在同一个领域大显身手。之前我们有一期文章,以全球知名的协作平台Notion为例,探讨了“通才”的重要性,如今Claude团队对物理系学霸姚顺宇伸出橄榄枝,似乎又一次向我们展现了跨学科人才的重要性。

01.两位清华天才Yao Shunyu

姚顺宇,清华物理系的传奇特奖得主,以其在凝聚态物理领域的突破性贡献而名声大噪。他首次在国际上给出了关于非厄米系统的拓扑能带理论,并准确预测了相关现象。他的研究成果发表在世界物理顶级期刊Phys. Rev. Lett.上,含金量之高,让一位211大学的副教授都不禁感叹:我们这边即使是教授,也没有能超过姚顺宇同学目前本科期间的物理水平的。

从清华本科毕业后,姚顺宇前往斯坦福攻读博士。今年毕业后,他先是到加州伯克利做了几个月博士后,随后便正式加入了Anthropic的Claude团队,从物理的世界踏入了人工智能的奇妙殿堂。

在这里插入图片描述

姚顺宇(物理)

姚顺雨,同样是清华出身,姚班学霸+联席会主席,计算机专业,还是个Rapper。他在科研上的成就同样具备不小的影响力:思维树(Tree of Thoughts)让LLM反复思考,大幅提高推理能力;SWE-bench,一个大模型能力评估数据集;SWE-agent,一个开源AI程序员。他在毕业后加入了OpenAI团队

两位Yao Shunyu,同名同校、同在自己专业领域取得了令人瞩目的成就,并最终都投身于人工智能大模型的领域,成为了跨学科合作的典范。

姚顺雨(计算机)

02.Claude团队:不拘一格降人才

Claude团队属于Anthropic,一家专注于人工智能研究和开发的公司。Claude团队以其在大模型领域的工作成果而闻名,特别是在自然语言处理(NLP)和机器学习领域。

Claude团队一直以来都对物理背景的人才有着特殊的偏好。其创始人Dario Amodei自己就是物理学家,他深知物理学家的思维方式和学习能力对于人工智能的发展有着重要的意义。所以物理学霸姚顺宇加入Claude团队,似乎也是一种必然。

无独有偶,隔壁的OpenAI,也不乏物理专业出身的人才。比如Sora团队中就有北大物理系校友靖礼。Sora这类视频生成模型,被定义为“物理世界的模拟器”,其背后的扩散模型,灵感更是从物理中的热力学借鉴而来。这似乎也在告诉我们,学科之间的界限正在逐渐模糊,跨学科的合作将成为未来科技发展的趋势。

03.跨学科:职场人的求职新路?

姚顺宇的跨学科的职业发展之路,展示了在当今职场中,不同专业背景的人才如何通过跨学科的方式拓宽自己的职业道路。

物理系姚顺宇的加入将为Claude团队带来了新的思维方式和解决问题的方法,这对于团队在人工智能领域的创新和研究路径探索具有重要意义。这种跨学科的合作不仅可以增强团队的创新能力,也使团队能够更好地适应技术的快速发展和变化,以及市场需求的增长。同时,也为我们展示了个人如何利用自己的专业优势在新的领域中找到立足点。

对于Claude团队而言,招聘像姚顺宇这样的跨学科人才,为其带来了显著的优势。不同背景的成员能够促进更广泛的思维碰撞,激发新的创意。跨学科团队的成员能够从多个角度分析问题,这有助于找到更全面、更有效的解决方案,特别是在理解复杂系统和实现技术突破方面。此外,跨学科团队的多样性也增强了团队的适应性和灵活性,使其能够更快地适应新趋势和技术。

跨学科合作的趋势将继续增长,它将重塑我们的工作方式和思考模式。企业和组织需要认识到这种合作模式的价值,并积极培养和吸引跨学科人才。同时,个人也应该拥抱终身学习的理念,不断拓展自己的知识和技能边界,以适应这个快速变化的世界。在未来,我们期待看到更多像Yao Shunyu这样的跨学科人才,他们将成为推动科技进步和社会发展的关键力量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值