随着深度学习技术的突破,AI大模型在处理复杂任务方面展现出了前所未有的能力,包括语言理解、图像识别和游戏等。大模型能力的提升,需要大模型算力提供强大支持,而巨大的算力必须赖于高性能的GPU集群。GPU集群的高效运行(为保障运行,散热所需的电力同样巨大)又是以消耗大量电力为前提的。换一句话说,如果没有强大的电力支持,大模型的训练任务是不可能完成的。但在大模型竞赛如火如荼地进行时,科技巨头在规模上你追我赶,根本不可能停下脚步,以至于电力需求越来越巨大。
埃隆·马斯克(Elon Musk)就感叹:“我从未见过任何技术进步得比这更快。”“人工智能计算似乎每六个月就以10倍的速度增长。很明显,它不能永远以这么高的速度持续下去。”同时,他不无忧虑地说:“人工智能计算的限制是非常可预测的……一年前,短缺的是芯片,神经网络芯片。那么,很容易预测,下一个短缺的将是电力基础设施(如变压器)。”“到2025年,电力供应可能不足以为越来越多的人工智能芯片供电。”
当然,不只是马斯克看到了问题之所在。Open AI创始人Sam Altman也曾表示:“人工智能的未来取决于清洁能源的突破。”英伟达创始人黄仁勋则指出:“AI的尽头是光伏和储能。”
01
训练大模型到底有多耗电?
以OpenAI的GPT-3模型为例,其训练过程的耗电量约为1.287吉瓦时,相当于120个美国家庭一年的用电量。这种电力消耗不仅体现在训练阶段,推理环节同样需要大量的电力支持。
尽管推理或模型部署阶段所需电力不如训练阶段那么多,但考虑到AI模型可能需要7×24小时不间断地运行以响应用户请求,这种持续的电力消耗同样不容忽视。推理阶段的电力消耗取决于模型的复杂度和请求的数量。实际上,人们都向复杂程度高与响应快速的大模型集中,这就增加了聊天机器人或搜索引擎后端的AI模型运行的电力消耗。
ChatGPT每天要响应大约2亿个请求,所需电力超过50万千瓦时,也就是说,ChatGPT每天的用电量相当于1.7万个美国家庭的用电量(美国普通家庭日均耗电量约为29千瓦时)。而随着生成式AI的广泛应用,预计到2027年,整个人工智能行业每年将消耗85~134太瓦时(1太瓦时=10亿千瓦时)的电力。
从参数规模上看,大模型先后经历了预训练模型、大规模预训练模型、超大规模预训练模型三个阶段,参数量实现了从亿级到百万亿级的突破。
2017年,谷歌首次提出6500万参数的Transformer模型;2018年,谷歌发布基于Transformer的BERT,BERT的参数为3.4亿;2019年,OpenAI推出了15亿参数的GPT-2,同年,谷歌推出T5模型,参数达到110亿。2020年,OpenAI推出了1750亿参数的GPT-3;2021年,谷歌推出Switch Transformer架构,其参数量扩展到了1.6万亿;同年,北京智源人工智能研究院也推出参数量在万亿级别的模型“悟道”。2022年,清华大学、阿里达摩院等机构的研究人员提出的“八卦炉”模型,其具有174万亿个参数。到今天,大模型参数量已实现百万亿级的突破。
人工智能大模型GPT-4的主要参数是GPT-3的20倍,计算量是GPT-3的10倍,能耗也随之大幅增加。
OpenAI曾发布报告指出,自2012年以来,AI训练所耗电力每3~4个月就会翻一倍。这说明,电力消耗与参数模型的迭代升级成正比。人工智能大模型的迭代创新,正是以电力能耗的高昂成本为代价的。据华为AI首席科学家田奇给出的数据,AI算力在过去10年至少增长了40万倍,这样的电力消耗增长,显然AI大模型所耗电力是惊人的,也是电力发展速度不可企及的。
据美林银行预测,到2030年,全球数据中心的电力需求可能达到126-152吉瓦,在此期间新增大约250太瓦时的电力需求,相当于2030年美国总电力需求的8%,而美国数据中心的电力需求将以每年约10%的速度增长。
华泰证券研报预测,到2030年,中国与美国的数据中心总用电量将分别达到0.65~0.95万亿千瓦时、1.2~1.7万亿千瓦时,是2022年的3.5倍和6倍以上。届时,AI用电量将达到2022年全社会用电量的20%和31%。
更有预测指出,如果不采取有效措施,到2030年AI可能会消耗全球电力供应的50%。如果是这样,电力短缺将成为现实。
国际能源署近期发布的报告预测,未来三年,全球对数据中心、加密货币和人工智能的电力需求将增加一倍以上,相当于一个德国的全部电力需求。到2026年,全球总体电力需求预计将增长3.4%。
目前,大模型训练的具体能耗量为1287兆瓦时(大概相当于3000辆特斯拉电动汽车同时上路),这一数据来自斯坦福人工智能研究所发布的《2023年AI指数报告》。
国外研究显示,一次标准谷歌搜索耗电0.3瓦时,AI大语言模型ChatGPT响应一次用户请求耗电约2.96瓦时,在AI大模型驱动下的一次谷歌搜索耗电8.9瓦时。
02
AI大模型对电力系统有何影响?
实际上,AI大模型训练已经对电力系统产生了重大影响。
首先是导致了电力需求急剧增加。高电力需求一旦超出现有电力基础设施的设计容量,就需要对电网进行升级或扩建以满足需求。在用电高峰时段,AI训练中心的电力消耗可能会影响电网的稳定性,导致供电波动甚至停电。AI训练中心的电力需求可能会与居民和工业用电发生冲突,特别是在电力供应不足时,需要权衡能源如何分配的问题。电力供应紧张的压力会导致电力成本上升,增加AI训练的经济负担,影响相关企业和研究机构的运营。
其次是倒逼电力行业转型,改变能源格局,为可再生能源带来机遇。AI训练的高能耗问题也为可再生能源的利用提供了机遇,鼓励数据中心采用太阳能、风能等清洁能源,促使电力行业向更环保的能源结构转型。为了更有效地管理和分配电力,电力行业正在发展智能电网技术,提高电网的灵活性和可靠性。随着AI训练对电力稳定性的需求,电力行业正在探索和应用各种储能技术,如电池储能系统,以平衡供需。同时,电力行业正通过需求侧管理来应对AI训练带来的电力需求波动,例如通过动态定价机制来平衡负载。
03
如何应对AI高能耗?
面对AI的高能耗问题,行业已经开始采取一系列措施。一方面,通过技术创新和算法优化来提高能效,减少电力消耗。另一方面,正在逐步完善相关政策和法规,以促进AI行业的绿色发展。本身大模型训练就很烧钱,电力成本又是很大的一块支出。所以,数据中心选址要尽量靠近电力中心,如水力资源丰富的地区,最主要的考虑就是输送中的能耗。也有企业另辟蹊径,为降低电力消耗,微软曾尝试部署海下数据中心,脸书(Facebook)数据中心选址北极圈附近,阿里云千岛湖数据中心使用深层湖水制冷等。
对于AI行业来说,正在开发新的算法和技术,以提高AI模型的能效。其中包括优化神经网络结构,减少不必要的计算,以及采用更高效的机器学习算法。研究人员正在探索算法优化方法,如模型剪枝、量化和知识蒸馏等技术,力求减少模型的复杂性,降低能耗,同时保持高性能。
针对AI训练的专用硬件,如ASIC(应用特定集成电路)和TPU(张量处理单元),正在被开发以提供更高的计算效率,并降低能耗。
上面已经提到,为了减少对化石燃料的依赖,许多数据中心开始采用太阳能、风能等可再生能源,以实现更清洁的能源供应。同时,采用节能设计,利用自然冷却方法,以及高效的能源管理系统,这样的数据中心被定义为绿色数据中心。
政府和监管机构也正在制定政策和法规,鼓励和支持AI行业的绿色发展,包括提供税收优惠、补贴和研发资金。
总之,既不是抑制AI大模型的规模,也不是要减少数据中心的能源消耗,而是要提升能源消费的质量。
从电力行业来说,为了应对挑战,正在探索一系列解决方案。例如,提高电力供应的灵活性、推广分布式能源系统以及减少能源输送损耗等。
从提高电力供应的灵活性来说,可以采取以下措施。
一是整合可再生能源。通过将太阳能、风能等可再生能源更好地整合到电力系统中,利用其高渗透率的特点,优化规划和布局,以适应电力需求的变化。同时,考虑到可再生能源的大规模并网带来的不确定性,需要提升电力系统的灵活性,以增强其应对不确定事件的调节能力。
二是智能电力调度。利用知识图谱整合电力供应链、需求管理和设备状态等信息,结合大数据和人工智能技术开展电力调度,实现供需平衡,减少电量损耗。这种智能调度方式可以更精准地应对市场变化,提高电力系统的稳定性和可靠性。
三是推广分布式能源系统。通过推广分布式能源系统,如电池储能系统(BESS),可以增强电网的弹性,特别是在极端事件期间,通过输电扩展和最优资源分配来增强电网弹性。
四是改造现有机组和设备。改变现有机组的运营模式,进行设备灵活性改造,以及创新电厂灵活性发电方式,可以提升系统的灵活性。此外,加大力度推动具备改造条件的煤电机组进行灵活性改造,同时加快完善辅助服务市场建设,明确补偿机制,调动企业实施灵活性改造的积极性。
五是优化电网规划和运行。考虑线路传输能力和安全运行的角度定义电网灵活性指标,并在此基础上,考虑系统经济运行策略,以保障系统的安全经济运行。同时,建立综合考虑储能、需求侧响应以及短路电流约束的电网规划混合整数线性规划模型,以总投资最小为目标函数,优化电网扩展规划。
为应对挑战,国家能源局发展规划司副司长赵莉在国家能源局2024年二季度新闻发布会上曾指出,国家能源局正在密切跟踪人工智能等高新技术发展趋势,分析研判电力需求增长态势,系统谋划保供举措,确保能源稳定供应与需求增长相适应。
为持续强化能源电力供应保障,我国电力行业在发挥好化石能源兜底保障作用的同时,正加快煤电等支撑调节性电源建设,并更加积极地推动新能源发电平稳健康发展。
实际上,AI大模型不仅给电力行业带来了挑战,也带来了新的高科技。我国正在电力行业中推广大模型技术,来提高电厂的运行效率和安全性,并获得高效管理、智能化建议和决策支持。南方电网公司自主研发的电力行业人工智能创新平台,已经展示了其在电力政策法规、能源结构组成和“双碳”发展目标方面的应用能力。具体到技术层面,大模型技术已经能够在输配电领域每分钟处理100张问题图片,同时识别20类缺陷,其识别效率是传统AI算法的10倍,为提升能源效率发挥了重要作用。
虽然大模型的发展确实增加了电力需求,也有导致电力短缺的趋势,但通过技术创新和政策调整,可以有效地缓解这一问题。从另一个角度说,并非大模型本身会导致电力短缺,而是其快速增长的电力需求以及高能耗特性,需要妥善管控,并采取切实有效的措施。
马斯克的说法也很明确,就是要增加清洁能源的生产,来满足AI大模型以及电动汽车的用电需求,他呼吁要尽可能多地制造变压器。
还是那句话,发展的问题要在发展中解决。AI大模型在大大增加能源消耗的同时,也在为电力行业的转型发展提供新的技术路径。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。