随着人工智能技术的飞速发展,大模型技术已经成为AI领域的重要分支。
本文将深入探讨四种关键的大模型技术架构:纯粹Prompt提示词法、Agent + Function Calling机制、RAG(检索增强生成)以及Fine-tuning微调技术,揭示它们的特性和应用场景。
一、纯粹Prompt提示词法:构建直观交互模式
纯粹Prompt提示词法是AI大模型交互的直接形式,它通过模拟自然对话,实现用户与AI的即时互动。
核心特性:
- 即时性:AI模型能够迅速响应用户输入,提供即时反馈。
- 简洁性:无需复杂的配置,简化了人机交互过程。
- 场景简易查询:适用于用户进行简单查询,如节日旅游建议等。
- 技术路由转发模块:负责对用户输入的Prompt进行分类和分发。
二、Agent + Function Calling:主动提问与函数调用
Agent + Function Calling架构赋予AI模型主动提问和调用函数的能力,以获取更多信息并执行特定任务。
核心特性:
- 多轮交互:AI模型通过多轮对话理解用户需求,提供精准反馈。
- 功能执行:通过函数调用执行特定功能,如查询、预订等。
- 场景智能家居控制:AI模型主动获取环境信息,控制家居设备。
- 技术主动提问:AI模型根据对话上下文,主动提出问题以获取更多信息。
三、RAG(检索增强生成):结合向量数据库进行检索
RAG(Retrieval-Augmented Generation)架构通过结合Embeddings技术和向量数据库匹配最相近的向量,优化了信息检索过程,提高了检索速度和准确性。
Embeddings 过程把文本转化成高维空间中的向量形式,优化了相似性比较,而这些精炼的向量则储存在高效的向量数据库中,旨在实现高效的检索。
核心特性:
- 向量检索:利用向量数据库进行高效的相似性比较和数据检索。
- 生成优化:结合检索结果,生成更准确和相关的回答。
- 场景学习辅导:在学生遇到难题时,快速提供学习资源和解答。
- 技术Embeddings技术:将文本转化为高维向量,优化相似性比较。
四、Fine-Tuning:深度学习与长期记忆
Fine-Tuning技术通过对预训练模型进行额外训练,使其能够深入学习特定领域的知识,提升专业性和准确性。
核心特性:
- 领域专业化:使AI模型在特定领域展现出更高的专业性。
- 长期记忆:通过微调,模型能够记住并运用长期知识。
- 场景医疗诊断领域:提供精确的医疗诊断建议。
- 技术预训练与微调:结合预训练模型和领域特定数据进行微调。
五、技术路线选择
这个流程图指导了,根据业务需求和场景特点,选择最合适的技术架构。
总结:
大模型技术的不断进步为AI领域带来了新的可能性。通过深入理解不同技术架构的特性和应用场景,我们可以更好地利用这些技术,推动AI技术的发展和应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
