刚体有限转动的交换定理

方向余弦矩阵

  在参考空间做定坐标系 O x y z Oxyz Oxyz,同时有动坐标系 O x ′ y ′ z ′ Ox^{\prime}y^{\prime}z^{\prime} Oxyz。空间中有一个向量 r \boldsymbol{r} r,在两个坐标系下的分量满足如下公式
r ′ = A 1 r (1) r^{\prime}=A_{1}r\tag{1} r=A1r(1)

其中 A 1 A_{1} A1称为 O x y z Oxyz Oxyz O x ′ y ′ z ′ Ox^{\prime}y^{\prime}z^{\prime} Oxyz的坐标变换矩阵。如果有另一个坐标系 O x ′ ′ y ′ ′ z ′ ′ Ox^{\prime\prime}y^{\prime\prime}z^{\prime\prime} Oxyz,且 O x ′ y ′ z ′ Ox^{\prime}y^{\prime}z^{\prime} Oxyz O x ′ ′ y ′ ′ z ′ ′ Ox^{\prime\prime}y^{\prime\prime}z^{\prime\prime} Oxyz的坐标变换矩阵为 A 2 A_{2} A2,则有
r ′ ′ = A 2 r ′ = A 2 A 1 r (2) r^{\prime\prime}=A_{2}r^{\prime}=A_{2}A_{1}r\tag{2} r=A2r=A2A1r(2)

由于 r r r具有任意性,因此可得 O x y z Oxyz Oxyz O x ′ ′ y ′ ′ z ′ ′ Ox^{\prime\prime}y^{\prime\prime}z^{\prime\prime} Oxyz的坐标变换矩阵为 A 2 A 1 A_{2}A_{1} A2A1
把坐标系的变换可以看作刚体绕定点的有限转动,因此上式表明,当刚体做连续两次转动时,其合成转动的方向余弦矩阵为两次分转动的方向余弦矩阵从右向左顺次左乘。

绕坐标轴转动时的方向余弦矩阵

  设坐标系 O x y z Oxyz Oxyz当前 x x x轴, y y y轴和 z z z轴分别旋转 α \alpha α, β \beta β γ \gamma γ的角度变为 O x ′ y ′ z ′ Ox^{\prime}y^{\prime}z^{\prime} Oxyz,则对应方向余弦矩阵分别为
A α = ⌊ 1 0 0 0 cos ⁡ α sin ⁡ α 0 − sin ⁡ α cos ⁡ α ] A_{\alpha}=\left\lfloor\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{array}\right] Aα=1000cosαsinα0sinαcosα

A β = ⌊ cos ⁡ β 0 − sin ⁡ β 0 1 0 sin ⁡ β 0 cos ⁡ β ] (3) A_{\beta}=\left\lfloor\begin{array}{ccc} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{array}\right]\tag{3} Aβ=cosβ0sinβ010sinβ0cosβ(3)

A γ = [ cos ⁡ γ sin ⁡ γ 0 − sin ⁡ γ cos ⁡ γ 0 0 0 1 ] A_{\gamma}=\left[\begin{array}{rll} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{array}\right] Aγ=cosγsinγ0sinγcosγ0001

并满足
r ′ = A i r ( i = α , β , γ ) r^{\prime}=A_{i}r(i=\alpha,\beta,\gamma) r=Airi=α,β,γ

这种绕着当前坐标轴旋转的方式被称为欧拉角旋转。
  欧拉角旋转还有这样一种理解方式,即坐标系不动,向量围绕当前坐标轴反方向旋转对应角度。因此,若以公式 r ′ = A α r r^{\prime}=A_{\alpha}r r=Aαr为例进行说明,则该式有如下两种理解方式:

  1. 向量不动,坐标系绕着当前 x x x轴转 α \alpha α角度
  2. 坐标系不动,向量 r r r围绕当前 x x x轴转 − α -\alpha α角度。

因此,向量 r r r围绕当前 x x x轴转 α \alpha α角度则为 A α T A_{\alpha} ^ \mathrm{ T } AαT

(图2 欧拉角旋转)

固定轴旋转

  欧拉角旋转是指刚体绕着当前坐标轴旋转的方式。还有一种旋转,其坐标系绕着定坐标系固定,被称为固定轴旋转。如第一次绕 x x x轴旋转 α \alpha α角,第二次绕 y y y β \beta β角。对于固定轴旋转,其合成转动的方向余弦矩阵可由有限转动的交换定理推导获得。

有限转动的交换定理

  具有固定点的刚体进行连续的顺序的固定轴旋转,等于按逆序进行对应角度的欧拉角旋转。
  这一定理的证明可以借助欧拉角旋转的“定坐标系解释来说明。定坐标系的坐标轴可以被认为一直是当前坐标轴。设刚体上固联一向量,在动坐标系下的分量恒为 r r r。(由于初始时刻动坐标系与定坐标系重合,因此 r r r也是初始时刻定坐标系下的分量)。根据前文所叙述,该矢量运动可被解释为首先绕着当前 x x x坐标轴旋转 α \alpha α得到 r ′ r^{\prime} r,然后再绕着当前 y y y轴旋转 β \beta β角得到 r ′ ′ r^{\prime\prime} r。因此
r ′ = A α T r , r ′ ′ = A β T r ′ = A β T A α T r (4) r^{\prime}=A_{\alpha} ^ \mathrm{ T }r, r^{\prime\prime}=A_{\beta} ^ \mathrm{ T }r^{\prime}=A_{\beta} ^ \mathrm{ T }A_{\alpha} ^ \mathrm{ T }r \tag{4} r=AαTrr=AβTr=AβTAαTr(4)

r r r r ′ ′ r^{\prime\prime} r分别为矢量在动坐标系和定坐标系下的坐标,因此存在关系
r ′ ′ = A T r (5) r^{\prime\prime}=A^ \mathrm{ T }r \tag{5} r=ATr(5)

  对照公式(5),易得
A = A α A β A=A_{\alpha}A_{\beta} A=AαAβ

定理得证。
  下面以最常用的3-1-3欧拉转动为例,形象化地对定理进行解释。

(图2)

(图3 欧拉角旋转)

(图4 固定轴旋转)

注意:公式(3)是把在定坐标系的坐标转为动坐标系的坐标,其中 A A A矩阵是定坐标系进行三种坐标轴转换至动坐标系。机器人领域习惯把动坐标系写在右边,因此其三个欧拉旋转矩阵的定义与本文的定义是取逆的关系。

参考文献
贾书惠 刚体动力学
John J. Craig 机器人学导论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值