刚体的质量几何

系统对轴的惯性矩

  设 P ν P_{\nu} Pν点到某个轴 u u u的距离等于 ρ ν \rho_{\nu} ρν,称
J u = ∑ ν = 1 N m ν ρ ν 2 (1) J_{u}=\sum_{\nu=1}^{N} m_{\nu} \rho_{\nu}^{2}{\tag1} Ju=ν=1Nmνρν2(1)

是系统相对于 u u u的惯性矩。可见,当系统为刚体时,系统对于 相对刚体固定的轴 的惯性矩是固定的,不随坐标系的选取而改变。

(图1)
坐标表示

  为了进一步量化分析,下面引入坐标系。假定 O O O为刚体内的确定点, O x y z Oxyz Oxyz是固联在刚体上的坐标系。轴 u u u经过原点,其与 O x Ox Ox, O y Oy Oy, O z Oz Oz轴夹角的余弦分别为 α \alpha α, β \beta β, γ \gamma γ,如图(1)所示。于是
J u = ∑ ν = 1 N m ν ρ ν 2 = ∑ ν = 1 N m ν [ ( x ν 2 + y ν 2 + z ν 2 ) − ( x ν α + y ν β + z ν γ ) 2 ] J_{u}=\sum_{\nu=1}^{N} m_{\nu} \rho_{\nu}^{2}=\sum_{\nu=1}^{N} m_{\nu}\left[\left(x_{\nu}^{2}+y_{\nu}^{2}+z_{\nu}^{2}\right)-\left(x_{\nu} \alpha+y_{\nu} \beta+z_{\nu} \gamma\right)^{2}\right] Ju=ν=1Nmνρν2=ν=1Nmν[(xν2+yν2+zν2)(xνα+yνβ+zνγ)2]

经过整理,得
J u = J x α 2 + J y β 2 + J z γ 2 − 2 J x y α β − 2 J x z α γ − 2 J y z β γ (2) J_{u}=J_{x} \alpha^{2}+J_{y} \beta^{2}+J_{z} \gamma^{2}-2 J_{x y} \alpha \beta-2 J_{x z} \alpha \gamma-2 J_{y z} \beta \gamma{\tag2} Ju=Jxα2+Jyβ2+Jzγ22Jxyαβ2Jxzαγ2Jyzβγ(2)

其中引入了下面的记号
J x = ∑ ν = 1 N m ν ( y ν 2 + z ν 2 ) , J y = ∑ ν = 1 N m ν ( z ν 2 + x ν 2 ) , J z = ∑ ν = 1 N m ν ( x ν 2 + y ν 2 ) J_{x}=\sum_{\nu=1}^{N} m_{\nu}\left(y_{\nu}^{2}+z_{\nu}^{2}\right), \quad J_{y}=\sum_{\nu=1}^{N} m_{\nu}\left(z_{\nu}^{2}+x_{\nu}^{2}\right), \quad J_{z}=\sum_{\nu=1}^{N} m_{\nu}\left(x_{\nu}^{2}+y_{\nu}^{2}\right) Jx=ν=1Nmν(yν2+zν2),Jy=ν=1Nmν(zν2+xν2),Jz=ν=1Nmν(xν2+yν2)

(3) {\tag3} (3)

显然(2)和(3)不依赖于轴 u u u的选择。(2)中各量称为轴惯性矩(也称对轴的转动惯量)。 J x J_{x} Jx是对 O x Ox Ox轴的惯性矩,以此类推。(3)中各量称为离心惯性矩(也称惯量积)。轴惯性矩是系统绕相应轴转动时的惯性度量,离心惯性矩可以理解为系统质量非平衡性的度量,它们描述系统相对坐标平面质量分布的非对称性。
  轴惯性矩和离心惯性矩对于不同的点 O O O是不同的。当坐标系绕同一点 O O O变化时,它们也会改变。

惯量椭球

  惯量椭球是表征刚体相对某个点质量分布的物理量。
  假定 O O O是刚体内的确定点。对任意过点 O O O的任意轴 u u u,在其轴上都有点 N N N,使得 O N ON ON的距离与对 u u u的惯性矩的平方根成反比,即
O N = 1 / J u (4) O N=1 / \sqrt{J_{u}}{\tag4} ON=1/Ju (4)

改变 u u u的方向,则对应的 O N ON ON J u \sqrt{J_{u}} Ju 随之改变。由各个方向上 N N N点在空间中形成会形成封闭曲面。这一封闭曲面与刚体相固联的,其形状与坐标系的选择无关。

坐标表示

  为了进一步分析该曲面,下面引入坐标系。和上文一样,假定 O O O为刚体内的确定点, O x y z Oxyz Oxyz是固联在刚体上的坐标系。轴 u u u经过原点,其与 O x Ox Ox, O y Oy Oy, O z Oz Oz轴夹角的余弦分别为 α \alpha α, β \beta β, γ \gamma γ。令 N N N的几何坐标 ( x , y , z ) (x,y,z) (x,y,z),该坐标满足的方程即是上述的曲面方程。根据式(4),易得下式成立
α = J u x , β = J u y γ = J u z (5) \begin{array}{c} \alpha=\sqrt{J_{u}} x, \quad \beta=\sqrt{J_{u}} y \\ \gamma=\sqrt{J_{u}} z \end{array}{\tag5} α=Ju x,β=Ju yγ=Ju z(5)

代入式(2),得到
J x x 2 + J y y 2 + J z z 2 − 2 J x y x y − 2 J x z x z − 2 J y z y z = 1 (6) J_{x} x^{2}+J_{y} y^{2}+J_{z} z^{2}-2 J_{x y} x y-2 J_{x z} x z-2 J_{y z} y z=1{\tag6} Jxx2+Jyy2+Jzz22Jxyxy2Jxzxz2Jyzyz=1(6)

  这就是曲面方程在 O x y z Oxyz Oxyz坐标系下的数学表达式,根据解析几何知识判断是一个椭球,这就是惯性椭球。根据前文所述,该曲面(椭球)固联于刚体,其形状与坐标系选择无关。根据解析几何知识,椭球自身有三个方向的主轴。因此,当所选择另一个坐标系 O x ′ y ′ z ′ Ox^{\prime}y^{\prime}z^{\prime} Oxyz与三个方向的主轴重合时,椭球方程可写为
J x ′ x ′ 2 + J y ′ y ′ 2 + J z ′ z ′ 2 = 1 (7) J_{x^{\prime}} x^{\prime2}+J_{y^{\prime}} y^{\prime2}+J_{z^{\prime}} z^{\prime2}=1{\tag7} Jxx2+Jyy2+Jzz2=1(7)

其中 J x ′ J_{x^{\prime}} Jx, J y ′ J_{y^{\prime}} Jy, J z ′ J_{z^{\prime}} Jz被称为主轴惯性矩。如果它们各不相同,则主轴是唯一的。如果椭球是旋转椭球,则主轴选为旋转轴以及赤道平面任意两个垂直的轴。如果三者相等,则所有过 O O O点的轴都是惯性主轴。
  惯量椭球形象化地表示出刚体对过 O O O点的所有惯量矩分布状况。当有了惯性椭球,对任意轴 u u u的惯性矩都等于 1 / O N 2 1/ON^2 1/ON2 O N ON ON是连接 O O O与椭球交点的线段。相对椭球最短轴的惯性矩最大,相对椭球最长轴的惯性矩最小。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值