欧拉-潘索运动

欧拉运动

  无力矩状态下的刚体绕质心的惯性运动被称为欧拉情形。根据动量守恒和能量守恒定律,相对质心 O O O的角动量模长以及动能均为常数,即
ω ⋅ J ⋅ ω = 2 T = c o n s t ( J ⋅ ω ) 2 = L 2 = c o n s t (1) \begin{aligned} \boldsymbol{\omega} \cdot \boldsymbol{J} \cdot \boldsymbol{\omega} &=2 T=\mathrm{const} \\ (\boldsymbol{J} \cdot \boldsymbol{\omega})^{2} &=L^{2}=\mathrm{const} \end{aligned}\tag{1} ωJω(Jω)2=2T=const=L2=const(1)

上式是矢量式,与坐标系的选择无关。

坐标表达

  为了进一步分析角速度受到的约束,引入定义在质心 O O O的主轴坐标系 O x y z Oxyz Oxyz,则式(1)在该坐标系下展开的形式为
J x ω x 2 + J y ω y 2 + J z ω z 2 = 2 T (2) J_x\omega_{x}^{2}+J_y\omega_{y}^{2}+J_z\omega_{z}^{2}=2T \tag{2} Jxωx2+Jyωy2+Jzωz2=2T(2)

J x 2 ω x 2 + J y 2 ω y 2 + J z 2 ω z 2 = L 2 (3) J_x^{2}\omega_{x}^{2}+J_y^{2}\omega_{y}^{2}+J_z^{2}\omega_{z}^{2}=L^2 \tag{3} Jx2ωx2+Jy2ωy2+Jz2ωz2=L2(3)

公式(2)(3)分别定义了两个椭球面。(2)被称为能量椭球,(3)被称为动量矩椭球。椭球限定了刚体角速度在本体某一方向上的模长,而这一约束与坐标系的选择无关。因此,能量椭球和动量矩椭球均以质心为原点,并且固联在刚体上。因此就可以把椭球看作刚体本身,椭球在空间中的姿态就是刚体自身的姿态,椭球的旋转就是刚体的旋转,刚体的角速度就是椭球的角速度。能量椭球和动量矩椭球的交线即是当前 T T T, L L L情况下角速度 ω \boldsymbol{\omega} ω在本体系下的矢量端点轨迹。

潘索几何解释

  上面分析了角速度在本体系下的轨迹。
  潘索给出了欧拉情形下角速度在空间中的运动解释。公式(1)写成分量的形式为,
ω ⋅ L = c o n s t (4) \boldsymbol{\omega} \cdot \boldsymbol{L}=\mathrm{const} \tag{4} ωL=const(4)

这说明角速度矢量 ω \boldsymbol{\omega} ω在对于质心 O O O的角动量 L \boldsymbol{L} L方向上的投影是常数。由于 L \boldsymbol{L} L是常矢量,在空间中保持不变。(由于刚体的运动可以分解为质心的平动和绕质心的转动。如今只考虑转动,因此可以把质心 O O O固定在空间中。)这时,根据上述分析,角速度矢量 ω \boldsymbol{\omega} ω的端点在一个垂直于角动量 L \boldsymbol{L} L的平面 π \pi π上运动。该平面在空间中固定,因此被称为不变平面。容易得到不变平面的两个重要性质:

  1. 与质心的距离为 2 T / L 2T/L 2T/L
  2. 垂直于角动量 L \boldsymbol{L} L
(图1)

  下面从能量椭球(本体系)的角度再来审视不变平面。假定 P P P点( ω x \omega_x ωx, ω y \omega_y ωy, ω z \omega_z ωz)是能量椭球上角速度轨迹上的任意一点。将能量椭球的方程(2)改写为
F ( x , y , z ) = J x x 2 + J y y 2 + J z z 2 − 2 T (5) F(x,y,z)=J_x{x}^{2}+J_y{y}^{2}+J_z{z}^{2}-2T\tag{5} F(x,y,z)=Jxx2+Jyy2+Jzz22T(5)

则函数 F ( x , y , z ) F(x,y,z) F(x,y,z) x x x, y y y, z z z的偏导数在 P P P点的值表示 P P P点处能量椭球切平面 π ′ \pi^{\prime} π的一组法线的方向
( ∂ F ∂ x ) P = 2 J x ω x , ( ∂ F ∂ y ) P = 2 J y ω y , ( ∂ F ∂ z ) P = 2 J z ω z (6) \left(\frac{\partial F}{\partial x}\right)_{P}=2 J_x\omega_{x}, \quad\left(\frac{\partial F}{\partial y}\right)_{P}=2 J_y \omega_{y}, \quad\left(\frac{\partial F}{\partial z}\right)_{P}=2 J_z \omega_{z}\tag{6} (xF)P=2Jxωx,(yF)P=2Jyωy,(zF)P=2Jzωz(6)

因为角动量 L \boldsymbol{L} L在本体系下表示为 ( J x ω x , J y ω y , J z ω z ) (J_x\omega_{x},J_y \omega_{y},J_z \omega_{z}) (Jxωx,Jyωy,Jzωz),和式(6)对比可以发现,在 P P P处的能量椭球的切平面 π ′ \pi^{\prime} π的法向与角动量 L \boldsymbol{L} L的方向平行,即切平面 π ′ \pi^{\prime} π与角动量 L \boldsymbol{L} L垂直。这说明,从本体系上看,当角速度矢量末端在惯性椭球表面的轨迹上变化时,位于矢量末端处的惯性椭球的切平面 π ′ \pi^{\prime} π与角动量 L \boldsymbol{L} L矢量垂直。与此同时,从空间上来看,角速度矢量末端在不变平面上运动时,矢量末端所在的不变平面也与 L \boldsymbol{L} L矢量垂直。由于过一点与向量垂直的平面是唯一的,因此能量椭球上角速度轨迹上的各点切平面 π ′ \pi^{\prime} π就是空间中的不变平面 π \pi π。因此,从空间上来看,能量椭球在不变平面上滚动,能量椭球与不变平面的交点就是瞬时角速度矢量的末端。随着椭球的滚动,在椭球上形成的轨迹就是本体极迹,在不变平面上形成的轨迹就是空间极迹。在质心固定的前提下,能量椭球绕定点旋转,其瞬时角速度即是刚体角速度。因为和不变平面接触的点刚好位于瞬时转轴上,因此速度为零。这说明能量椭球的滚动是纯滚动
  综上,无力矩的刚体姿态运动,可视为中心固定的能量椭球在空间固定的空间平面上的无滚动滑动。这种几何描述被称为欧拉潘索运动

参考文献
陀螺力学 刘延柱
Dynamics of Multibody System Jens Wittenburg

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值