李群与李代数---浅薄理解

以下为笔者自己的浅薄理解,如有冒犯,还望海涵。

要理解李群与李代数,首先要了解什么是代数。
代数指的是符号和映射的组成。如实数与四则运算。

什么是群呢?
群(Group)指的是一种集合和一种运算组成的代数结构。所以,说群的时候,要指明集合类型与运算法则。
若把一个集合记作 A A A,一种运算记作 ⋅ \cdot ,则这两个小东西构成的群可以记作 G = ( A , ⋅ ) G=(A,\cdot) G=(A,)。群要满足一些条件,即要满足几个映射关系"封结幺逆"<凤姐咬你>

  • 封闭性 ∀ a 1 , a 2 ∈ A ; a 1 ⋅ a 2 ∈ A \forall a_1,a_2 \in A; a_1 \cdot a_2 \in A a1,a2A;a1a2A
  • 结合律 ∀ a 1 , a 2 , a 3 ∈ A ; ( a 1 ⋅ a 2 ) ⋅ a 3 = a 1 ⋅ ( a 2 ⋅ a 3 ) \forall a_1,a_2,a_3 \in A; (a_1 \cdot a_2) \cdot a_3= a_1 \cdot (a_2 \cdot a_3) a1,a2,a3A;(a1a2)a3=a1(a2a3)
  • 幺元 ∃ a 0 ∈ A ; ∀ a ∈ A , a 0 ⋅ a = a ⋅ a 0 = a \exists a_0 \in A; \forall a \in A,a_0 \cdot a=a \cdot a_0=a a0A;aA,a0a=aa0=a
  • ∀ a ∈ A ; ∃ a − 1 ∈ A , a ⋅ a − 1 = a 0 \forall a \in A;\exists a^{-1} \in A,a \cdot a^{-1}=a_0 aA;a1A,aa1=a0

什么是李群呢?
李群(Lie Group)指的是具有连续性质的群。

矩阵中常见的李群:

  • 一般线性群GL( n n n): n × n n\times n n×n的可逆矩阵与矩阵乘法构成
  • 特殊正交群SO( n n n): n n n维空间内的旋转矩阵与矩阵乘法构成。
  • 特殊欧式群SE( n n n): n n n维空间内的变换矩阵与矩阵乘法构成。

李代数指的是一种集合、一种数域和一种二元运算的组成。
若把一个集合记作 V \mathbb V V,一个数据记作 F \mathbb F F,一种二元运算记作 [ , ] [,] [,],则这三个小东西构成的李代数可以记作 g = ( V , F , [ , ] ) \mathfrak g=(\mathbb V,\mathbb F,[,]) g=(V,F,[,])。同样地,若想成为李代数,需要满足几个条件:

  • 封闭性: ∀ X , Y ∈ V ; [ X , Y ] ∈ V \forall \bm X,\bm Y \in \mathbb V;[\bm X,\bm Y]\in \mathbb V X,YV;[X,Y]V
  • 双线性: ∀ X , Y , Z ∈ V , a , b ∈ F ;               [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] \forall \bm X,\bm Y,\bm Z \in \mathbb V,a,b\in \mathbb F;\\ \ \ \ \ \ \ \ \ \ \ \ \ \ [a\bm X+b\bm Y,\bm Z]=a[\bm X,\bm Z]+b[\bm Y,\bm Z],[\bm Z,a\bm X+b\bm Y]=a[\bm Z,\bm X]+b[\bm Z,\bm Y] X,Y,ZV,a,bF;             [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y]
  • 自反性: ∀ X ∈ V ; [ X , X ] = 0 \forall X\in \mathbb V;[\bm X,\bm X]=0 XV;[X,X]=0
  • 雅可比等价: ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ X , Y ] ] + [ Y , [ Z , X ] ] = 0 \forall \bm X,\bm Y,\bm Z \in \mathbb V,[\bm X,[\bm Y,\bm Z]]+[\bm Z,[\bm X,\bm Y]]+[\bm Y,[\bm Z,\bm X]]=0 X,Y,ZV,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0

李群与李代数的关系:
李代数是与李群对应的另一种代数结构。李群是一个具有群结构的流形, 也就是说, 是一块儿歪七扭八的几何体或空间,研究这样的复杂空间必然很难受,所以数学家就采取了物理人的终极奥义"一阶近似展开"来研究李群。所谓一阶近似就是用切线代替曲线、用切面代替曲面, 说得高端些, 用切空间代替流形。 而李代数,其实就是李群在恒等元处的切空间, 这就是二者的联系。最终的目的是,用李代数来研究李群的部分特性。通过在SLAM中的应用可以看出,李群作用于矩阵,李代数作用于向量。举个栗子,特殊正交群 S O ( 3 ) \mathbf {SO}(3) SO(3)用于描述旋转矩阵,特殊正交群对应的李代数 s o ( 3 ) \mathfrak {so}(3) so(3)用于描述旋转矩阵的导数。

在视觉SLAM应用中,关心的李群与李代数有两个。
S O ( 3 ) \mathbf {SO}(3) SO(3) s o ( 3 ) \mathfrak {so}(3) so(3):应用于旋转矩阵。
S E ( 3 ) \mathbf {SE}(3) SE(3) s e ( 3 ) \mathfrak {se}(3) se(3):应用于变换矩阵。

李群名称特殊正交群特殊欧式群
李群 S O ( 3 ) = { R ∈ R 3 × 3 ∣ R R T = I , det ( R ) = 1 } \mathbf {SO}(3)= \\ \left \lbrace \bm R\in \mathbb R^{3\times 3} \vert \bm R \bm R^T=\bm I,\text {det}(\bm R)=1\right\rbrace SO(3)={RR3×3RRT=I,det(R)=1} S E ( 3 ) = { T = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } \mathbf {SE}(3)= \\ \left \lbrace \bm T =\left[ \begin{matrix} \bm R & \bm t \\ \bm 0^T & 1 \end{matrix} \right] \in \mathbb R^{4\times 4} \vert \bm R \in \mathbf {SO}(3),\bm t \in \mathbb R^3 \right\rbrace SE(3)={T=[R0Tt1]R4×4RSO(3),tR3}
李代数 s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 ∈ } \mathfrak {so}(3)= \\ \left\lbrace \bm \phi \in \mathbb R^3,\bm \Phi=\bm \phi ^{\wedge} \in \mathbb R^{3\times 3} \in \right\rbrace so(3)={ϕR3,Φ=ϕR3×3} s e ( 3 ) = { ξ = [ ρ ϕ ] ∈ R 6 , ρ ∈ R 3 , ϕ ∈ s o ( 3 ) , ξ ∧ = [ ϕ ∧ ρ 0 T 0 ] ∈ R 4 × 4 } \mathfrak {se}(3)= \\ \left\lbrace \bm \xi= \left[\begin{matrix} \bm \rho \\ \bm \phi \end{matrix} \right] \in \mathbb R^6,\bm \rho \in \mathbb R^3,\bm \phi \in \mathfrak {so}(3),\bm \xi ^{\wedge}=\left[\begin{matrix} \bm \phi ^{\wedge} & \bm \rho \\ \bm 0^T & 0 \end{matrix}\right] \in \mathbb R^{4\times 4} \right\rbrace se(3)={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0Tρ0]R4×4}
李括号 [ ϕ 1 , ϕ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ [\bm \phi _1,\bm \phi _2]=(\bm \Phi_1\bm \Phi_2-\bm \Phi_2\bm \Phi_1) ^{\vee} [ϕ1,ϕ2]=(Φ1Φ2Φ2Φ1) [ ξ 1 , ξ 2 ] = ( ξ 1 ∧ ξ 2 ∧ − ξ 2 ∧ ξ 2 ∧ ) ∨ [\bm \xi _1,\bm \xi _2]=(\bm \xi_1 ^{\wedge} \bm \xi_2^{\wedge}-\bm \xi_2 ^{\wedge} \bm \xi_2^{\wedge}) ^{\vee} [ξ1,ξ2]=(ξ1ξ2ξ2ξ2)
作用对象旋转矩阵变换矩阵
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值