大家好,我是邓飞,之前推荐过这本《Genome-Wide Association Studies》的书籍,2022年出版的,内容比较前沿。
今天介绍第四章:《GWAS中的统计模型》
这本书整体的目录如下:
常用的GWAS模型方法有:单位点GWAS、多位点GWAS、贝叶斯和机器学习。
GWAS分析结果关注的要点有:统计能力、计算效率、缺失数据的处理、稀有变异和遗传结构变异。
影响GWAS分析的要点有:
- 异常值和非正态数据,增加一类错误,降低统计功效
- 遗传力影响
- 基因与环境互作影响
- 群体大小
- 群体结构
- LD衰减
- 标记密度
- MAF次等位基因频率
- 显著性阈值
- 统计模型,比如K矩阵和Q矩阵
单位点检测的GWAS模型:
1,GLM模型:GLM进行单位点检测,无需确定遗传算法,可以考虑群体结构(PCA)降低过度拟合的错误率,不能考虑基因型之间的不平等相关性(亲缘关系)
2