第四章:GWAS中的统计模型

大家好,我是邓飞,之前推荐过这本《Genome-Wide Association Studies》的书籍,2022年出版的,内容比较前沿。

今天介绍第四章:《GWAS中的统计模型》

这本书整体的目录如下:

read-normal-img

常用的GWAS模型方法有:单位点GWAS、多位点GWAS、贝叶斯和机器学习。

GWAS分析结果关注的要点有:统计能力、计算效率、缺失数据的处理、稀有变异和遗传结构变异。

影响GWAS分析的要点有:

  • 异常值和非正态数据,增加一类错误,降低统计功效
  • 遗传力影响
  • 基因与环境互作影响
  • 群体大小
  • 群体结构
  • LD衰减
  • 标记密度
  • MAF次等位基因频率
  • 显著性阈值
  • 统计模型,比如K矩阵和Q矩阵

单位点检测的GWAS模型:

1,GLM模型:GLM进行单位点检测,无需确定遗传算法,可以考虑群体结构(PCA)降低过度拟合的错误率,不能考虑基因型之间的不平等相关性(亲缘关系)

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值