(1) 负荷预测的重要性及背景
随着电力系统规模的逐步扩展,电力负荷的精准预测成为保证电力系统稳定运行及提升经济效益的关键环节。负荷预测的精度直接影响电力调度、供电计划及市场运营等环节。近年来,神经网络在负荷预测中的应用展现了其强大的非线性拟合能力。然而,神经网络的性能依赖于模型的参数选择及优化。为了提高负荷预测的精度,本文基于麻雀搜索算法(Sparrow Search Algorithm, SSA)对神经网络的参数进行优化,并在此基础上提出了一种改进的麻雀算法。该改进算法结合了多种优化策略,包括引入Circle映射、Levy飞行、动态权重因子、柯西变异等,使得算法的全局搜索和局部搜索能力得到显著提升。
本文以葫芦岛市部分城区2021年9月至12月的历史用电数据为样本,选取前89天的数据作为训练集,最后一天的数据作为验证集,通过实验验证改进麻雀算法在负荷预测中的优越性。实验通过Matlab2021环境下进行仿真,比较了改进前后的麻雀算法以及几种神经网络模型的预测效果。
(2) 改进麻雀算法的具体内容
本文提出的改进麻雀算法在原有麻雀搜索算法基础上引入了一系列改进措施,以增强算法的多样性、寻优能力和跳出局部最优的能力,具体改进措施如下:
- Circle映射初始化策略:为增加初始种群的多样性,本文使用Circle映射(Circle Map)对麻雀个体进行初始化。Circle映射是一种常用于增强种群随机性的非线性映射,通过该方法可以提高个体分布的广泛性,有助于增强全局搜索能力。
- 引入Levy飞行策略:Levy飞行是一种跳跃行为的随机游走方式,它可以帮助算法在搜索空间中跳跃较远的距离,从而提高算法的全局探索能力,尤其是在陷入局部最优时能有效地跳出局部极值区域。本文在侦查者位置更新时引入Levy飞行,以增强麻雀算法的探索能力和寻优效率。
- 动态权重因子ω:为了使算法在迭代初期能更好地进行全局探索,本文在发现者位置更新中引入动态权重因子。初期权重因子ω较大,促使个体进行大范围的搜索,随着迭代次数的增加,ω逐渐减小,从而加强局部搜索能力。通过该策略,麻雀算法能够在不同阶段平衡全局探索与局部开发。
- 柯西变异融合:在后期阶段,算法易陷入局部最优。为增强其跳出局部最优的能力,本文结合了柯西变异(Cauchy Mutation),该变异策略在当前最优解附近进行随机扰动生成新的解,以提高算法的多样性,进一步增强了算法跳出局部最优的能力。
- 上一代全局最优引入:为进一步提高算法的全局收敛能力,本文在发现者位置更新时,结合了上一代的全局最优解。通过该策略,算法不仅受当前发现者位置的影响,同时也考虑到上一代的全局最优位置,从而提高了算法的全局搜索性能,避免陷入局部最优。
通过这些改进,麻雀算法在负荷预测中的参数优化能力得到了大幅提升。尤其是在高维、复杂的负荷预测问题中,改进后的算法展现出更好的收敛性能及寻优效率。
(3) 实验设计与仿真结果
为了验证改进麻雀算法的有效性,本文设计了一系列实验对比了不同算法及模型的负荷预测效果。实验采用的样本数据为葫芦岛市部分城区2021年9月1日到12月1日的90天用电数据,采集周期为1小时。本文选择前89天的数据作为训练集,最后1天的数据用于模型验证。实验选择了以下几种神经网络模型及优化算法进行对比:
- 基础模型:包括ELM(Extreme Learning Machine)和LSTM(Long Short-Term Memory),这些模型不带有任何优化算法。
- 优化组合模型:包括PSO-LSTM、SSA-LSTM、MSSA-LSTM等组合模型。这些模型分别结合了粒子群优化(PSO)、麻雀搜索算法(SSA)及改进麻雀搜索算法(MSSA)进行参数优化。
% 基于改进麻雀算法的负荷预测
% 参数初始化
pop_size = 50; % 种群大小
max_iter = 100; % 最大迭代次数
dim = 10; % 问题的维度
lb = -10; % 下界
ub = 10; % 上界
% 初始种群位置
pop = lb + (ub-lb).*rand(pop_size, dim);
% 初始化位置和适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
fitness(i) = objective_function(pop(i, :));
end
% 算法主循环
for iter = 1:max_iter
% 动态权重因子计算
omega = 0.9 - (0.9-0.4) * (iter / max_iter);
% 麻雀位置更新(包括Levy飞行、动态权重、全局最优引入等)
for i = 1:pop_size
if rand < 0.8
% 发现者更新
pop(i, :) = pop(i, :) + omega * (best_solution - pop(i, :)) + levy_flight(dim);
else
% 侦查者更新
pop(i, :) = pop(i, :) + omega * levy_flight(dim);
end
% 边界处理
pop(i, :) = max(min(pop(i, :), ub), lb);
end
% 适应度更新
for i = 1:pop_size
fitness(i) = objective_function(pop(i, :));
end
% 更新全局最优
[~, best_index] = min(fitness);
best_solution = pop(best_index, :);
end
disp('最佳解决方案:');
disp(best_solution);
% 目标函数
function f = objective_function(x)
f = sum(x.^2); % 假设目标函数为求解二次函数
end
% Levy飞行函数
function L = levy_flight(dim)
beta = 1.5;
sigma = (gamma(1 + beta) * sin(pi * beta / 2) / (gamma((1 + beta) / 2) * beta * 2^((beta - 1) / 2)))^(1 / beta);
u = randn(1, dim) * sigma;
v = randn(1, dim);
step = u ./ abs(v).^(1 / beta);
L = 0.01 * step;
end