📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)金融知识图谱的构建 研究首先采用自底向上的方式构建金融知识图谱。通过接口调用和设计爬虫程序,从金融新闻、报告、公告等来源获取数据,并进行清洗和预处理。然后,根据预定义的规则,对数据进行实体、属性和关系的提取,形成三元组。这些三元组随后被存储在Neo4j图数据库中,实现知识的组织和可视化查询。金融知识图谱的构建是实现金融问答系统的基础,它包含了丰富的金融实体(如公司、产品、行业)和它们之间的关系(如隶属关系、影响关系)。
(2)基于知识图谱的金融问答算法设计 研究设计了一种基于知识图谱的金融问答算法,该算法的核心是将用户问题中的关键字链接到知识图谱中,并返回直观简洁的答案。算法的主要任务包括金融问句的实