知识图谱驱动的金融问答系统设计与实现毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)金融知识图谱的构建 研究首先采用自底向上的方式构建金融知识图谱。通过接口调用和设计爬虫程序,从金融新闻、报告、公告等来源获取数据,并进行清洗和预处理。然后,根据预定义的规则,对数据进行实体、属性和关系的提取,形成三元组。这些三元组随后被存储在Neo4j图数据库中,实现知识的组织和可视化查询。金融知识图谱的构建是实现金融问答系统的基础,它包含了丰富的金融实体(如公司、产品、行业)和它们之间的关系(如隶属关系、影响关系)。

(2)基于知识图谱的金融问答算法设计 研究设计了一种基于知识图谱的金融问答算法,该算法的核心是将用户问题中的关键字链接到知识图谱中,并返回直观简洁的答案。算法的主要任务包括金融问句的实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值