金融领域知识图谱的命名实体识别与关系抽取研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)知识图谱发展现状及特定领域知识图谱构建问题

近年来,计算机性能持续提高,互联网文本信息呈爆炸式增长。在此背景下,把 Web 信息转变为结构化、知识化形式,构建由概念、实体、关系组成的知识图谱这一语义网络已成为必然趋势。知识图谱依据适用范围可分为通用知识图谱和领域知识图谱。2012 年谷歌将知识图谱用于搜索引擎后,通用知识图谱在工业界和学术界都获得了巨大发展。但领域知识图谱的发展相对滞后,因为其适用范围和构造要求特殊,面临着诸多难题。

一方面,领域知识图谱缺乏标注语料。标注语料对于知识图谱的构建至关重要,它是训练模型的基础数据。然而在特定领域中,收集和整理标注语料的难度较大,耗费大量的人力和时间。另一方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值