📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)知识图谱发展现状及特定领域知识图谱构建问题
近年来,计算机性能持续提高,互联网文本信息呈爆炸式增长。在此背景下,把 Web 信息转变为结构化、知识化形式,构建由概念、实体、关系组成的知识图谱这一语义网络已成为必然趋势。知识图谱依据适用范围可分为通用知识图谱和领域知识图谱。2012 年谷歌将知识图谱用于搜索引擎后,通用知识图谱在工业界和学术界都获得了巨大发展。但领域知识图谱的发展相对滞后,因为其适用范围和构造要求特殊,面临着诸多难题。
一方面,领域知识图谱缺乏标注语料。标注语料对于知识图谱的构建至关重要,它是训练模型的基础数据。然而在特定领域中,收集和整理标注语料的难度较大,耗费大量的人力和时间。另一方