📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)金融知识图谱构建解决主题描述问题
在主题网络爬虫技术中,主题描述的准确性至关重要。对于金融领域而言,构建一个能够精准描述金融主题的知识图谱是核心任务。我们采用了 Bert - BiLSTM - CRF 模型来处理金融相关文本。这个模型的优势在于它能够对金融文本进行命名实体和关系的联合抽取。在金融领域,文本数据往往包含大量复杂的实体和关系,比如金融机构、金融产品、交易行为等。通过该模型,可以准确地识别出这些实体和关系。
对于金融领域的异构数据,需要进行知识融合。在实际的金融数据环境中,数据来源广泛,格式和内容各不相同。这些异构数据可能存在实体属性值不一致和缺失的问题。例如,不同金融机构对同一种金融产品的某些属性描述可能存在差异,或者部分数据可能缺少关键属性值。通过知识融合的步骤,可以对这些问题进行处理,使数据更加规范化和完整化。
最后,利用 Neo4j 图数据库来实现三元组数据的持久化存储。三元组数据是知识图谱的基本组成部分,它清晰地表示了实体、关系和实体之间的联系。Neo4j 图数据库非常适合存储这种具有复杂关系的数据结构。在金融知识图谱 FinGraph 中,每一个三元组都代表了金融领域中一个有意义的信息单元。例如,“银行 - 发行 - 信用卡” 这样的三元组明确了银行和信用卡之间的发行关系。通过这种方式,完成了金融知识图谱 FinGraph 的构建,为主题网络爬虫提供了准确的主题描述基础,使得爬虫能够明确在金融领域中需要关注和抓取的内容方向。