提升RAG数据获取阶段质量的3大优化技巧,让你的检索更精准!

1. 背景

Retrieval-Augmented Generation(RAG)技术近年来成为增强大语言模型(LLM)生成能力的重要工具。通过将外部知识库的数据检索与生成任务相结合,RAG系统能够更精确地回答用户查询。然而,数据获取阶段(即信息检索阶段)直接影响到最终生成结果的准确性和相关性。因此,如何优化检索过程,提高数据获取阶段的效率,成为了提升RAG性能的关键。

近期,我们总结了来自微软、Hugging Face和Toward Data Science的相关研究,深入探讨了如何优化RAG系统的数据获取阶段,并提炼出了几个关键技术。本篇文章将分享其中的三大核心技巧,帮助开发者提升检索效果和生成质量。


2. 原文综述

我们从微软、Hugging Face和Toward Data Science等多个来源汲取了关于数据获取优化的宝贵经验,并整合了不同的技术方法。以下是这些资源中涉及的主要优化策略:

  • 索引配置与搜索技术选择:了解如何配置向量搜索算法(如HNSW、KNN)以及选择适合的相似度度量(如余弦相似度、点积相似度等),从而提高检索效率和结果的相关性。微软和Hugging Face的研究都强调了向量搜索在大规模数据集上的优势。

  • 混合搜索与查询翻译:通过结合向量搜索和全文本搜索(Hybrid Search)技术,以及通过查询增强、分解和重写等查询翻译技巧,优化检索质量。Toward Data Science的研究特别提到,查询优化是解决检索性能瓶颈的一个关键环节。

  • 重排序与结果评估:对初步检索结果进行重排序,通过使用大语言模型或交叉编码器等方法,对检索文档进行语义相关性评分,并根据相关性重新排列。Hugging Face和微软都强调了语义重排序在提高检索准确性方面的重要性。

这些优化策略不仅增强了数据获取阶段的效率,也为RAG系统的生成质量打下了坚实的基础。


3. 数据获取阶段的优化要点

通过对微软、Hugging Face和Toward Data Science的分析,我们提炼出了以下几个关键的优化要点:

  1. 优化查询表达:通过查询增强、查询分解和查询重写等技术,提高查询的清晰度和准确性。优化后的查询能有效提高检索结果的相关性,尤其是在面对复杂和模糊查询时。

  2. 选择合适的检索技术:根据不同的应用场景和查询需求,选择合适的检索技术。常见的包括向量搜索、全文本搜索和混合搜索。每种技术都有其适用场景,理解其优势和局限性是优化数据获取的基础。

  3. 重排序检索结果:初步检索后,通过重排序方法重新排序检索结果,以确保返回最相关的文档。这一步骤对于进一步提升检索质量至关重要。

这些优化要点能够帮助开发者在数据获取阶段有效提高RAG系统的检索效率和效果。

数据获取阶段的3个关键优化技巧


4. 3个关键的优化技巧

基于微软、Hugging Face和Toward Data Science的思想,以下是我们总结出的三大优化技巧,它们能够显著提高数据获取阶段的效果。

1. 查询翻译(Query Translation)

查询翻译技术通过优化原始查询,使其更具针对性和准确性,从而提升检索质量。微软和Hugging Face的研究均强调了以下几种常见的查询翻译方法:

  • 查询增强(Query Augmentation):通过在查询中添加更多上下文,使查询更加明确。例如,将“Compare the earnings of Microsoft”增强为“Compare the earnings and revenue of Microsoft in the current year versus last year by quarter”。

  • 查询分解(Query Decomposition):将复杂的查询拆解为多个简单的子查询,分别进行检索,然后将结果合并。这样可以提高每个子查询的相关性,最终提升整体结果的准确性。

  • 查询重写(Query Rewriting):通过自动重写查询,解决查询中可能存在的模糊或不明确的部分。

实际应用示例:当用户输入“电动汽车的优缺点”这类模糊查询时,可以通过查询增强,将其改写为“电动汽车与内燃机汽车的优缺点对比”,使得查询更加具体,便于检索到更相关的文档。

把查询翻译融入到RAG流水线


2. 混合搜索(Hybrid Search)

混合搜索结合了向量搜索和关键字搜索的优势,能够在不同应用场景下提高检索的相关性和精度。具体实现为:

  • 向量搜索:利用查询与文档之间的语义相似度进行匹配,适合需要理解文本语义的应用场景。

  • 关键字搜索:通过匹配查询中提取的关键词与文档的关键词来检索,适合精确匹配。

  • 混合搜索:同时执行向量搜索和关键字搜索,并使用互惠排序(Reciprocal Rank Fusion)方法将两者的结果合并,确保返回的文档既有语义匹配,也有精确匹配。

实际应用示例:假设查询为“如何提高机器学习模型的准确度”,混合搜索能够同时理解“提高”这一语义信息,并根据关键词如“机器学习模型”和“准确度”提供相关结果,从而提高检索的覆盖面和精度。


3. 重排序(Reranking)

重排序技术通过对初步检索结果进行重新评估,确保返回最相关的文档。重排序方法包括:

  • 语言模型重排序:使用大语言模型对每个文档进行评分,并根据相关性对结果进行排序。

  • 交叉编码器重排序:使用交叉编码器(如RoBERTa模型)计算查询和文档之间的相似度,并根据得分重新排序结果。

  • 语义重排序:利用深度学习模型提升结果的语义相关性,确保返回的文档在语义层面与查询匹配。

实际应用示例:对于查询“如何提高机器学习模型的准确度”,通过重排序技术,优先返回那些具体讲解模型调优方法和准确度提升技巧的文献,而非简单匹配到关键词的文档。


5. 结果评估

评估优化效果是提升数据获取阶段性能的关键步骤。通过以下几个常见的评估指标,开发者可以精确地衡量优化策略的效果:

  • Precision@K:衡量前K个检索结果中相关文档的比例。该指标反映了检索结果的精确度。

  • Recall@K:衡量前K个检索结果中涵盖的相关文档占所有相关文档的比例。该指标反映了检索的全面性。

  • Mean Reciprocal Rank (MRR):衡量第一个相关结果出现在检索结果中的位置。该指标越高,说明相关结果越早出现。

实际应用示例:可以通过A/B测试来验证优化前后的检索结果,进一步分析混合搜索、查询翻译和重排序方法在不同查询和数据集上的效果。


6. 总结

通过总结微软、Hugging Face和Toward Data Science等来源的优化要点,本文介绍了如何通过混合搜索、查询翻译和重排序等核心技巧优化RAG系统的数据获取阶段。每一种优化方法都有其独特的应用场景,开发者需要根据具体任务和数据类型灵活选择并进行调整。

随着技术的不断发展,未来我们可以进一步探索更多自动化的优化方案,持续提升RAG系统的智能化和鲁棒性。通过不断实验和调整,开发者能够在实际应用中实现最佳的检索效果,并提升RAG系统在生成任务中的表现。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值