基于条件随机场的地面点云分类与分割


title: 基于条件随机场的地面点云分类与分割
date: 2018-04-11 22:55:54
categories: Machine Learning
tags:
- Machine Learning

欢迎访问我的个人博客:zengzeyu.com

前言


继上篇**《基于几何特征的地面点云分割》之后,本文紧接着对其他地面点分割方法进行了研究,在最近的英伟达开发者大会(Nvidia GTC)上,获悉了一篇使用时空条件随机场方法(SpatioTemporal Conditional Random Fields)对地面点云进行分割方法(详情请见本博客翻译博文《Ground Estimation and Point Cloud Segmentation using SpatioTemporal Conditional Random Field(精读)》),此论文早在2017年就发表了,只是最近才通过GTC大会得知,然后通过作者找到了2017年的完整论文,遂决定进行尝试,有关于这篇论文的信息请根据本博客中论文翻译博文按需阅读。
关于条件随机场前期知识本文也会相应给出,之前没有这方面知识储备的同学可根据本文的
预备知识**章节链接,对相应的知识进行恶补。笔者绘制了此篇论文的知识结构树,如下图所示。本文就条件随机场知识在第1章进行粗略的阐述,如果已经具备条件随机场知识的同学移步第2章。

![Screenshot from 2018-04-12 09:27:00.png](https://imgconvert.csdnimg.cn/aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy8xMDAyODA1OC01ZDlhMTExMzU1NzU4ZjkxLnBuZw?x-oss-process=image/format,png) 基于时空条件随机场进行地面点云分割知识谱逻辑图

预备知识


1. 空间地面模型

1.1 概率无向图模型
  1. 二维随机变量及其分布
  2. 概率无向图模型
  3. 配分函数
1.2 条件随机场
  1. 如何用简单易懂的例子解释条件随机场(CRF)模型?它和HMM有什么区别?
  2. 马尔科夫网络
  3. 室外场景三维点云数据的分割与分类P46
  4. 条件随机场-百度文库
  5. Conditional Random Field wiki

2. 推断求解

2.1 高斯模型
  1. 为什么样本方差(sample variance)的分母是 n-1?
  2. 协方差的意义和计算公式
  3. 浅谈协方差矩阵
2.2 期望最大化算法(EM)
  1. EM(期望最大化)算法初步认识

1. 条件随机场


1.1 条件随机场理论

条件随机场(Conditional Random Field, CRF)最初是由Laffery提出,用于对词性的分类,它是在最大熵模型和隐马尔科夫模型的基础上提出的一种判别式概率模型。条件随机场就是在假设输出变量具有马尔科夫性的前提下,利用给定的一组随机变量的条件来推断另一组随机变量的条件概率分布模型。由于本文的条件随机场主要用于三维点云的分类,所以,本文将主要讨论线性链条件随机场(Linear Chain Conditional Random Field)。
由于条件随机场是无向图模型的一种,故它满足无向图模型的任何属性,常常用 X X X Y Y Y 分别表示观察序列和与之对应的标记序列联合分布随机变量。在条件随机场的很多应用当中,都存在着一个隐过程,比如说在进行文本分类的过程中,就可以假设一段文本的标签只和该段文本的特征以及与该文本相连的链入链出等超链接有关,而与其他的因素没有任何关系。在应用条件随机场的过程中,有两项工作需要去做:一个是学习,一个是推断(类似与神经网络,学习出一个概率模型,然后用概率模型去判断新的无标记样本)。
(1) 学习: 给定一定量的观察序列集 X = { X 1 , X 2 , . . . , X n } X = \{ X_1,X_2,...,X_n \} X={ X1,X2,...,Xn}, 以及与观察序列相对应的标签集 Y = { Y 1 , Y 2 , . . . , Y n } Y = \{ Y_1,Y_2,...,Y_n \} Y={ Y1,Y2,...,Yn}, 通过这两个序列集以及他们所构成的条件随机场模型,学习满足一定准则的势函数(Potential Function)
(2) 推断:给定一个观察序列集 X = { X 1 , X 2 , . . . , X m } X = \{ X_1,X_2,...,X_m \} X={ X1,X2,...,Xm}, 寻找出最优可能满足标签序列中每个观察变量属性的标签集即如公式:
Y ^ = a r g   m a x P ( Y ∣ X ) \hat Y = arg \ max P(Y|X) Y^=arg maxP(YX)

根据图模型中知识可知,在图模型中,节点有两部分组成,一个是观察序列集 X = { X 1 , X 2 , . . . , X n } X = \{ X_1,X_2,...,X_n \} X={ X1,X2,...,Xn}, 另外一个是标签集 Y = { Y 1 , Y 2 , . . . , Y n } Y = \{ Y_1,Y_2,...,Y_n \} Y

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值