PCL_Harris关键点提取

Harris算子是常见的特征检测算子,既可以提取角点,也可以提取边缘点,利用点云法向量信息。
主要步骤:
(1)创建Harris关键点估计对象,创建Harris_keypoints对象用于保存Harris关键点。注意point类型为:pcl::PointXYZI,必须包含强度信息;

pcl::PointCloud<pcl::PointXYZI>::Ptr Harris_keypoints(new pcl::PointCloud<pcl::PointXYZI>());
pcl::HarrisKeypoint3D<pcl::PointXYZ, pcl::PointXYZI, pcl::Normal>::Ptr harris_detector ( new pcl::HarrisKeypoint3D<pcl::PointXYZ, pcl::PointXYZI, pcl::Normal>);

(2)设置检测参数:法向量估计半径、关键点估计近邻搜索半径;

//harris_detector->setNonMaxSupression(true);
harris_detector->setRadius(r_normal);
harris_detector->setRadiusSearch(r_keypoint);
harris_detector->setInputCloud(input_cloud);
//harris_detector->setNormals(normal_source);
//harris_detector->setMethod(pcl::HarrisKeypoint3D<pcl::PointXYZRGB,pcl::PointXYZI>::LOWE);

(3)计算并保存;

harris_detector->compute(*Harris_keypoints);
cout << "Harris_keypoints的大小是" << Harris_keypoints->size() << endl;
writer.write<pcl::PointXYZI>("Harris_keypoints.pcd", *Harris_keypoints, false);

(4)可视化。

pcl::visualization::PCLVisualizer visu3("clouds");
visu3.setBackgroundColor(255, 255, 255);
visu3.addPointCloud(Harris_keypoints, ColorHandlerT3(Harris_keypoints, 0.0, 0.0, 255.0), "Harris_keypoints");
visu3.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 8, "Harris_keypoints");
visu3.addPointCloud(input_cloud, "input_cloud");
visu3.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0, 0, 0, "input_cloud");
visu3.spin();

结果:
在这里插入图片描述

发布了22 篇原创文章 · 获赞 1 · 访问量 445
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览