三值网络--Trained Ternary Quantization

Trained Ternary Quantization
ICLR 2017
https://github.com/TropComplique/trained-ternary-quantization pytorch
https://github.com/buaabai/Ternary-Weights-Network pytorch

传统的二值网络将权重 W 量化为 +1、-1; 三值网络 TWN (Ternary weight networks) 将权重W 量化为 {−W_l ,0,+W_l }
在这里插入图片描述
阈值的计算公式如下所示
在这里插入图片描述
本文提出了新的三值网络
在这里插入图片描述
positive and negative weights,三个不同的值用于表示三值网络,这个正负权值是通过网络学习得到的
对应的梯度计算如下
在这里插入图片描述
在这里插入图片描述
本文的阈值选择采用:
在这里插入图片描述
set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset

The quantization roughly proceeds as follows.

  1. Train a model of your choice as usual (or take a trained model).

  2. Copy all full precision weights that you want to quantize. Then do the initial quantization:
    in the model replace them by ternary values {-1, 0, +1} using some heuristic.

  3. Repeat until convergence:
    1). Make the forward pass with the quantized model. 使用量化后的网络进行前向计算
    2). Compute gradients for the quantized model. 对量化网络进行梯度计算
    3). Preprocess the gradients and apply them to the copy of full precision weights. 使用梯度更新网络模型的权重
    4). Requantize the model using the changed full precision weights. 对新的权重进行量化

  4. Throw away the copy of full precision weights and use the quantized model.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

11

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值