建模仿真的注意事项

最近在做纵侧向预警相关的建模仿真,吃了很大的亏,主要原因是仿真之后把实验结果都用MATLAB的fig保留了下来,但是由于插入的图片格式不符合或者图片中字体太小,需要重新进行仿真。由于有四组仿真实验,所用软件PanoSim又极其消耗内存,因此虽然实验的参数都还记得,但是依旧特别花时间。事后我想对于建模仿真,做之前应该注意以下事项。

  1. 记录实验环境、条件、参数。目的是可以通过这些初始条件复现实验,这一点很重要,因为有些调参极其消耗时间,这一点可以节省大量时间。
  2. 保留重要实验数据。如果记录了实验环境、条件、参数当然可以重复实验,但是如果所用软件很卡,或者计算特别耗时、极其消耗计算资源,复现实验也会消耗很多时间和精力,因此保留重要实验的数据,可以直接绘图,也会很有必要!
  3. 保留重要编写的函数、绘图脚本、模型等等。这一点的重要性不言而喻,不要重复造轮子,要尽可能站在阶梯上往上进步。
  4. 耐心积累阶梯和种树。制定一个好的东西,后期不断复用,会逐渐提高效率。比如写论文,若原有模型、论文模板、仿真软件都非常熟悉,待构建算法或者模型也胸有成竹,写一篇论文应该非常快。
  5. 记录以上需要记录的东西,做好整理工作。
### Simulink仿真使用技巧、注意事项及最佳实践 #### 1. 可视化建模环境的有效利用 Simulink提供了一个可视化建模环境,允许用户通过简单的拖放操作来构建复杂系统模型。这种交互式的开发方式不仅简化了建模过程,还使整个设计流程更加直观和易于理解[^1]。 ```matlab % 创建一个新的Simulink模型并保存为myModel.slx new_system('myModel'); save_system('myModel', 'myModel.slx'); ``` #### 2. 参数设置与优化 为了获得更精确的结果,在创建好基本结构之后还需要仔细调整各个模块参数。合理配置这些选项有助于提高计算效率以及减少不必要的误差源。例如,对于连续时间系统的离散化处理时应选择合适的采样周期;而对于非线性元件,则需考虑其工作范围内的特性变化等因素的影响。 #### 3. 自动代码生成功能的应用 借助于内置于Simulink中的Real-Time Workshop (RTW),可以从已建立好的模型自动生成高质量的目标平台兼容代码(如C/C++)。这一步骤极大地促进了从概念验证到实际产品部署之间的过渡速度,并减少了手动编写底层实现所需时间成本和技术风险[^2]。 #### 4. 调试与验证手段的选择 当遇到难以解释的行为或错误提示时,可以充分利用软件自带的各种调试工具来进行问题排查。比如Scope Scope Viewer可以帮助实时观察信号波形特征;而Data Inspector则可用于记录历史数据以便后续分析比较。另外还可以尝试启用诊断消息输出功能以获取更多关于潜在隐患的信息反馈。 #### 5. 文档记录的重要性 在整个项目生命周期里保持良好的文档习惯是非常重要的。清晰明了的技术说明不仅能帮助团队成员之间更好地沟通协作,也为后期维护提供了宝贵的参考资料。建议定期更新README文件或其他形式的指南手册,确保其中包含了最新的架构图解、接口定义等内容描述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吉大秦少游

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值