单目相机成像模型——针孔相机模型

高翔:SLAM十二讲阅读笔记
本节主要注意四个坐标:世界,相机,归一化相机,像素。

针孔相机模型

相机坐标转换成像素坐标,由内参数矩阵决定。
在这里插入图片描述
相机位姿决定世界坐标转换成相机坐标:即外参数矩阵
在这里插入图片描述
内参数矩阵K为3X3矩阵,对于三维空间点,旋转矩阵R和平移矩阵t构成的外参数矩阵T为4X4矩阵,为了统一维度信息,对相机坐标进行归一化处理,得到归一化相机坐标。
注:归一化的Z有可能小于1,因此此处归一化处理时,应该注意。
在这里插入图片描述
流程:世界坐标——相机坐标——归一化相机坐标——像素坐标

畸变

透镜形状引起的畸变为径向畸变:包括桶形畸变和枕形畸变;
在这里插入图片描述
由透镜和成像面板不平行引起的畸变为切向畸变
在这里插入图片描述
分析径向畸变与切向畸变的不同:
对于任意平面一点笛卡尔坐标(x,y),如果用极坐标表示(r, theta),
径向畸变改变的是r:点距离坐标原点的距离;
切向畸变改变的是theta:点与原点的连线与水平轴的夹角。

径向畸变修正:
在这里插入图片描述
切向畸变修正:
在这里插入图片描述
畸变修正的过程:
对于任意相机坐标P(X,Y,Z),能通过五个畸变修正参数进行坐标修正。

  1. 对相机坐标进行归一化,归一化坐标(x,y);
  2. 对归一化平面上的点进行径向畸变和切向畸变的修正:
    在这里插入图片描述
  3. 将修正后的点,通过内参数矩阵换算为像素坐标,得到点在图像上的位置。
    在这里插入图片描述

单目相机成像过程

在第三步增加畸变修正即可。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值