本文链接
1. 什么叫函数列
- 你肯定知道什么叫数列,这个高中生都知道的!
- 数列中的每一项都是个数字啊,那函数列中的每一项是啥呢?函数列中的每一项都是个函数啊!
- 比如下面的东西就是个函数列
x , x 2 , x 3 , . . . , x n , . . . x, x^2, x^3,...,x^n,... x,x2,x3,...,xn,...
sin y , sin y 2 , sin y 3 , . . . , sin y n , . . . \sin y, \sin y^2, \sin y^3,...,\sin y^n,... siny,siny2,siny3,...,sinyn,...
不过上面写成那样不好看,一般都简写成
{
x
n
}
\{x^n\}
{xn},
{
sin
y
n
}
\{\sin y^n\}
{sinyn}
两个函数列的自变量分别是
x
x
x和
y
y
y
- 对于函数列
{
x
n
}
\{x^n\}
{xn},当
x
=
−
1
x=-1
x=−1时,这个函数列摇身一变,成为了数列
{
(
−
1
)
n
}
\{(-1)^n\}
{(−1)n},这个数列显然不是收敛的!
- 因此,我们可以说, x = − 1 x=-1 x=−1时,函数列 { x n } \{x^n\} {xn}不收敛。
-
x
=
1
x=1
x=1时,这个函数列摇身一变,成为了数列
{
(
1
)
n
}
\{(1)^n\}
{(1)n},这个数列显然收敛!
- 因此,我们可以说, x = 1 x=1 x=1时,函数列 { x n } \{x^n\} {xn}收敛。
- 显然,当
x
∈
(
−
1
,
1
]
x\in (-1,1]
x∈(−1,1]时,对于该区间的每一个
x
x
x,函数列
{
x
n
}
\{x^n\}
{xn}都收敛!
- 并且当 x ∉ ( − 1 , 1 ] x\notin (-1,1] x∈/(−1,1]时,函数列 { x n } \{x^n\} {xn}都不收敛!
- 所以我们就把 ( − 1 , 1 ] (-1,1] (−1,1]叫做这个函数列的收敛域