1 函数列的一致收敛性

本文链接

1. 什么叫函数列

  • 你肯定知道什么叫数列,这个高中生都知道的!
  • 数列中的每一项都是个数字啊,那函数列中的每一项是啥呢?函数列中的每一项都是个函数啊!
  • 比如下面的东西就是个函数列

x , x 2 , x 3 , . . . , x n , . . . x, x^2, x^3,...,x^n,... x,x2,x3,...,xn,...

sin ⁡ y , sin ⁡ y 2 , sin ⁡ y 3 , . . . , sin ⁡ y n , . . . \sin y, \sin y^2, \sin y^3,...,\sin y^n,... siny,siny2,siny3,...,sinyn,...

不过上面写成那样不好看,一般都简写成 { x n } \{x^n\} {xn}, { sin ⁡ y n } \{\sin y^n\} {sinyn}
两个函数列的自变量分别是 x x x y y y

  • 对于函数列 { x n } \{x^n\} {xn},当 x = − 1 x=-1 x=1时,这个函数列摇身一变,成为了数列 { ( − 1 ) n } \{(-1)^n\} {(1)n},这个数列显然不是收敛的!
    • 因此,我们可以说, x = − 1 x=-1 x=1时,函数列 { x n } \{x^n\} {xn}不收敛。
  • x = 1 x=1 x=1时,这个函数列摇身一变,成为了数列 { ( 1 ) n } \{(1)^n\} {(1)n},这个数列显然收敛!
    • 因此,我们可以说, x = 1 x=1 x=1时,函数列 { x n } \{x^n\} {xn}收敛。
  • 显然,当 x ∈ ( − 1 , 1 ] x\in (-1,1] x(1,1]时,对于该区间的每一个 x x x,函数列 { x n } \{x^n\} {xn}都收敛!
    • 并且当 x ∉ ( − 1 , 1 ] x\notin (-1,1] x/(1,1]时,函数列 { x n } \{x^n\} {xn}都不收敛!
  • 所以我们就把 ( − 1 , 1 ] (-1,1] (1,1]叫做这个函数列的收敛域

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值