数学分析(十三)-函数列与函数项级数2-1-一致收敛函数列的性质1:连续性【若函数列{fₙ}在区间Ⅰ上一致收敛, 且每一项都连续, 则其极限函数f在区间Ⅰ上也连续】

本文探讨了在一致收敛的函数列中,如果每一项都连续,那么其极限函数也在相同区间上连续。通过定理13.8和13.9的证明,阐述了函数连续性的保持性,以及不一致收敛与极限函数连续性的关系。
摘要由CSDN通过智能技术生成

本节讨论由函数列与函数项级数所确定的函数的连续性、可积性与可微性.

定理 13.8

设函数列 { f n } \left\{f_{n}\right\} { fn} ( a , x 0 ) ∪ ( x 0 , b ) \left(a, x_{0}\right) \cup\left(x_{0}, b\right) (a,x0)(x0,b) 上一致收敛于 f ( x ) f(x) f(x),且对每个 n n n, lim ⁡ x → x 0 f n ( x ) = a n \lim \limits_{x \rightarrow x_{0}} f_{n}(x)=a_{n} xx0limfn(x)=an, 则 lim ⁡ n → ∞ a n \lim \limits_{n \rightarrow \infty} a_{n} nliman lim ⁡ x → x 0 f ( x ) \lim \limits_{x \rightarrow x_{0}} f(x) xx0limf(x) 均存在且相等.


先证 { a n } \left\{a_{n}\right\} { an} 是收敛数列. 对任意 ε > 0 \varepsilon>0 ε>0, 由于 { f n } \left\{f_{n}\right\} { fn} 一致收敛, 故有 N N N, 当 n > N n>N n>N 时, 对任意正整数 p p p和对一切 x ∈ ( a , x 0 ) ∪ ( x 0 , b ) x \in\left(a, x_{0}\right) \cup\left(x_{0}, b\right) x(a,x0)(x0,b), 有

∣ f n ( x ) − f n + p ( x ) ∣ < ε .  \left|f_{n}(x)-f_{n+p}(x)\right|<\varepsilon \text {. } fn(x)fn+p(x)<ε

从而

∣ a n − a n + p ∣ = lim ⁡ x → x 0 ∣ f n ( x ) − f n + p ( x ) ∣ ⩽ ε . \left|a_{n}-a_{n+p}\right|=\lim \limits_{x \rightarrow x_{0}}\left|f_{n}(x)-f_{n+p}(x)\right| \leqslant \varepsilon . anan+p=xx0limfn(x)fn+p(x)ε.

这样由柯西准则可知 { a n } \left\{a_{n}\right\}

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值