object_detection的bounding box在graph中的操作例子(求IOU,排序等)

在物体检测任务中,TensorFlow提供了BoxList类和box_list_ops工具进行box操作。本文通过实例讲解如何在graph中进行IOU计算、排序等操作,以[cx, cy, width, height]格式转换为[xmin, xmax, ymin, ymax],并找到IOU最大的box。" 139619998,10405582,redis-cli命令详解及使用示例,"['Redis', '命令行工具', '数据存储', '数据库']
摘要由CSDN通过智能技术生成

在物体检测(object detection)任务中,box的操作是一个比较麻烦的事情,特别是要在tensorflow的graph中实现这些操作。

tensorflow考到这点,也提供了一些工具函数。本篇文章就用一个例子来引导大家使用这些工具。

首先是 BoxList类:存储多个box信息的数据结构

box_list_ops:提供了很多操作BoxList的方法,比如计算iou,排序等等

这两个py文件地址:https://github.com/tensorflow/models/tree/master/research/object_detection/core

import tensorflow as tf
from core import box_list
from core import box_list_ops
boxes1=tf.convert_to_tensor([[0.25, 0.25, 0.5, 0.5],[0.25, 0.25, 0.4, 0.5]]) #cx, cy,width, height
xmin=boxes1[:,0]-boxes1[:,2]/2
xmax=boxes1[:,0]+boxes1[:,2]/2
ymin=boxes1[:,1]-boxes1[:,3]/2 #I just want to try the [:] function of tensorflow
ymax=boxes1[:,1]+boxes1[:,3]/2 #the simplest way of doing this is using slice
boxes1=tf.transpose(tf.stack([ymin, xmin, ymax, xmax]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值