### SLAM 14讲 第10章 内容总结
SLAM 14讲的第十章主要围绕 **视觉里程计(Visual Odometry, VO)** 的实现展开,重点讨论如何通过连续帧间的特征匹配计算相机运动。以下是该章节的核心内容及其示例代码解析:
#### 1. 特征提取与描述子
在VO中,通常使用SIFT、SURF或ORB等算法提取图像中的特征点并生成对应的描述子。这些特征用于后续的匹配过程。
```cpp
cv::Ptr<cv::FeatureDetector> detector = cv::ORB::create();
std::vector<cv::KeyPoint> keypoints;
detector->detect(image, keypoints);
```
上述代码展示了如何利用OpenCV库创建一个ORB检测器,并从中提取关键点[^1]。
#### 2. 特征匹配
为了估计两幅图像间的关系,需要对前后帧的关键点进行匹配。常用方法包括暴力匹配(Brute Force Matching)和FLANN匹配。
```cpp
cv::BFMatcher matcher(cv::NORM_HAMMING);
std::vector<cv::DMatch> matches;
matcher.match(descriptors_1, descriptors_2, matches);
```
此部分实现了基于Hamming距离的特征匹配操作。
#### 3. 基础矩阵与本质矩阵
通过RANSAC算法筛选出可靠的匹配点后,可以进一步求解基础矩阵 \( F \) 和本质矩阵 \( E \),从而推导出相对位姿关系。
```cpp
cv::findEssentialMat(points1, points2, K, method=cv::RANSAC, prob=0.999, threshold=1.0, mask=inliers_mask);
cv::recoverPose(E, points1, points2, R, t, K);
```
这里分别调用了`findEssentialMat`函数获取本质矩阵以及`recoverPose`函数恢复旋转和平移向量。
#### 4. PnP问题求解
当已知三维空间点与其对应二维投影位置时,可以通过PnP算法估算相机姿态。
```cpp
cv::solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec);
```
以上片段说明了借助`solvePnPRansac`完成鲁棒性的单目重定位任务。
---
### 示例代码综合展示
以下是一个完整的VO流程简化版本:
```cpp
#include <opencv2/opencv.hpp>
#include <iostream>
int main() {
// 加载图片序列
std::vector<cv::Mat> images = {cv::imread("frame1.png"), cv::imread("frame2.png")};
// 初始化ORB特征检测器
cv::Ptr<cv::ORB> orb = cv::ORB::create();
std::vector<std::vector<cv::KeyPoint>> key_points(2);
std::vector<cv::Mat> descriptors(2);
for (size_t i = 0; i < 2; ++i) {
orb->detectAndCompute(images[i], cv::noArray(), key_points[i], descriptors[i]);
}
// 进行特征匹配
cv::BFMatcher matcher(cv::NORM_HAMMING);
std::vector<cv::DMatch> matches;
matcher.match(descriptors[0], descriptors[1], matches);
// 提取匹配点坐标
std::vector<cv::Point2f> pts1, pts2;
for (const auto& match : matches) {
pts1.push_back(key_points[0][match.queryIdx].pt);
pts2.push_back(key_points[1][match.trainIdx].pt);
}
// 计算本质矩阵
cv::Mat essential_matrix = cv::findEssentialMat(pts1, pts2, cv::CameraMatrix, cv::RANSAC, 0.999, 1.0);
// 恢复相机姿态
cv::Mat R, t;
cv::recoverPose(essential_matrix, pts1, pts2, cv::CameraMatrix, R, t);
std::cout << "Rotation Matrix:\n" << R << "\nTranslation Vector:\n" << t << std::endl;
return 0;
}
```
---
### 总结
本节介绍了视觉里程计的基本原理及其实现步骤,涵盖了从特征提取到最终位姿估计的过程。每一步都依赖于精确的数据处理和技术支持,例如特征匹配的质量直接影响到最后的结果准确性。