YOLOv8改进 优化HGBlock网络主干

本文介绍了如何在YOLOv8中优化HGBlock,利用RepConv提升目标检测性能。详细步骤包括创建新模块、修改源代码和配置yaml文件,最终实现Rep-HGBlock在模型中的融合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、HGBlock优化模型

HGNet是一种用于目标检测任务的神经网络模型。基于ResNeSt和Hourglass网络的结构,经过训练可以通过输入图像来检测图中的目标物体。

"HG"表示Hourglass网络的缩写,"Net"表示网络。这个模型的设计灵感来自于人类对目标进行检测和定位的能力。它具有多个由ResNeSt模块和Hourglass模块组成的重复结构,以提取图像中的特征。这些模块通过堆叠在一起的方式,可以逐渐提高对目标的检测精度。

Rep在目标检测任务中表现出色,具有较高的准确率和鲁棒性。它能够检测出输入图像中的多个目标,并给出它们的位置和类别。在实际应用中,RepHGBlock可以用于识别和跟踪目标,例如在自动驾驶、安防监控和智能机器人等领域。

二、代码实现

 1、在官方的yolov8包中ultralytics\ultralytics\nn的目录下新创建一个文件夹other_modules,用于存放额外添加的改进模块。

### 替代 HGBlock 的方法和实现细节 在 RTDETR 模型中,HGBlock 是一个重要的组成部分,负责特定的任务如特征提取。为了替换 HGBlock,需遵循以下原则: 1. **理解现有架构**:首先应深入研究当前使用的 HGBlock 架构及其功能[^1]。 2. **选择合适的替代模块**:根据需求挑选适合的新组件来代替 HGBlock。例如可以选择 ResNet 或者 EfficientNet 中的某些单元作为候选对象。这些新组件应该具备相似的功能特性以便于无缝集成到原有框架内。 3. **修改配置文件**:对于基于 PyTorch 实现的项目来说,通常会有一个 YAML 配置文件定义网络结构和其他超参数设置。因此,在此阶段需要编辑该文件以反映所选替代理论上的改变。比如将 `model.yaml` 文件中的相应部分更新为新的构建块描述。 4. **编码实现自定义层**:如果选用的是非标准库提供的组件,则可能还需要编写额外 Python 类来自定义所需行为。这涉及到继承 nn.Module 基类并重写 forward 方法等内容。 5. **测试与验证**:完成上述更改之后务必进行全面测试确保一切正常工作,并对比原版性能指标评估改进效果。 下面是一个简单的例子展示如何用Residual Block 来取代原有的 HGBlock: ```python import torch.nn as nn class ResidualBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels * self.expansion) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out ``` 接着可以在模型初始化时指定使用这个新的残差块而不是原来的 HGBlock : ```python from ultralytics import RTDETR if __name__ == '__main__': class CustomRTDETR(RTDETR): def _make_layer(self, block, planes, blocks, stride=1): layers = [] for i in range(blocks): if i == 0 and stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1,stride=stride,bias=False), nn.BatchNorm2d(planes * block.expansion)) else: downsample = None layers.append(block(self.inplanes, planes, stride,downsample)) self.inplanes = planes * block.expansion return nn.Sequential(*layers) custom_model = CustomRTDETR("rtdetr-l.pt") # 使用自定义block替换默认的HGBlock setattr(custom_model.backbone.body.layerX, 'blocks',custom_model._make_layer(ResidualBlock,...)) ... ``` 请注意以上代码仅为示意性质,实际操作过程中还需考虑更多因素如输入输出尺寸匹配等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值