🌞欢迎来到AI环境的世界
🌈博客主页:卿云阁💌欢迎关注🎉点赞👍收藏⭐️留言📝
🌟本文由卿云阁原创!
🌠本阶段属于练气阶段,希望各位仙友顺利完成突破
📆首发时间:🌹2025年3月21日🌹
✉️希望可以和大家一起完成进阶之路!
🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!
目录
0. 论文基本信息
Paper:论文链接
Code:GitHub - Zjut-MultimediaPlus/Rainformer: Pytorch implementation code of Rainformer
[引用] C. Bai, F. Sun, J. Zhang, Y. Song and S. Chen, "Rainformer: Features Extraction Balanced Network for Radar-Based Precipitation Nowcasting," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 4023305, doi: 10.1109/LGRS.2022.3162882.
1.背景介绍
降水短临预报是自然灾害研究中的基本挑战之一。高强度降雨,尤其是暴雨,会导致人们财
产的巨大损失。现有方法通常利用卷积操作提取降雨特征,并增加网络深度以扩展感受野以获得虚
假的全局特征。
虽然这种方案简单,但只能提取局部降雨特征,导致对高强度降雨不敏感。
本文提出了一种名为Rainformer的新型降水短临预报框架,其中提出了两个实用组件:
全局特征提取单元和门控融合单元(Gate Fusion Unit, GFU)。
前者依赖于基于窗口的多头自注意(Window-based Multi-head Self-attention, W-MSA)机
制,提供了强大的全局特征学习能力,而后者提供了局部和全局特征的平衡融合。
Rainformer具有简单而高效的架构,并显著提高了降雨预测的准确性,尤其是对高强度降
雨。它为实际应用提供了潜在解决方案。
实验结果表明,Rainformer在基准数据库上优于七种最先进的方法,并为高强度降雨预测任
务提供了更多见解。
2.新方法
提出了一种新的降水短临预报网络,名为Rainformer。它主要由特征提取平衡模块(Feature
Extraction Balance Module, FEBM)构建,包括局部特征提取单元、全局特征提取单元和门控
融合单元(GFU)。
据我们所知,所提出的Rainformer是第一个能够提取局部和全局特征的降水短临预报模型。
总之,我们的主要贡献如下:
我们引入了一种名为Rainformer的新框架用于降水短临预报。它可以分别从雷达回波图中提取
全局和局部特征,并平衡融合这两种特征,增强了模型对强降雨或暴雨的预测能力。
我们将自注意力引入特征提取过程中。因此,提取了更多的全局特征,对高强度降雨的预测产
生了积极影响。
我们提出了一种名为GFU的新特征平衡融合机制。它解决了不同尺度特征之间的不平衡,并有
效地提取了它们之间的互补信息。
所提出的Rainformer在广泛使用的基准数据库上远远优于七种最先进的方法,表现出色。
Rainformer的整体网络架构如图1所示。Rainformer包括一个编码器(绿色框)和一个解码器
(蓝色框)。它们都有四个阶段。随着阶段的深入,特征的大小变得更小。编码器和解码器都包括
FEBM。FEBM在每个阶段增强了低到中等和高强度的降雨特征。FEBM的详细信息将在下一节介
绍。
3.实验
A. 数据集
我们的模型和其他最新方法(SOTAs)都是在由荷兰皇家气象研究所(Koninklijk
Nederlands Meteorologisch Instituut,KNMI)在荷兰乌得勒支提出的降水短临预报基准数据集
上进行训练和测试的,并根据进行预处理。
该数据集包含荷兰地区每5分钟间隔的4,200,000个降雨图。训练集中包含5734个帧序列,测
试集中包含1557个序列。我们从默认的训练集中选择了4000个序列作为训练集,剩下的1734个作
为验证集。
每个序列包括18帧,大小为288×288像素。模型的输入使用九帧序列,另外的九帧作为
基准真实数据(Ground Truth, GT),用于与模型的预测结果进行比较。
4.结果分析
提出出了一种基于FCN和自注意机制的降水短临预报框架,称为Rainformer,该框架具有平
衡融合特征。实验结果表明,Rainformer在高强度降雨预测方面具有强大的能力。此外,我们设计
的GFU是有效的。Rainformer在基准数据集上表现出优越的性能,并得到了割离研究的支持。