【AI环境4】 | Rainformer:基于雷达的降水临近预报特征提取平衡网络

 🌞欢迎来到AI环境的世界 
🌈博客主页:卿云阁

💌欢迎关注🎉点赞👍收藏⭐️留言📝

🌟本文由卿云阁原创!

🌠本阶段属于练气阶段,希望各位仙友顺利完成突破

📆首发时间:🌹2025年3月21日🌹

✉️希望可以和大家一起完成进阶之路!

🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!


目录

0. 论文基本信息

1.背景介绍

2.新方法

3.实验

4.结果分析

0. 论文基本信息

Paper:论文链接

Code:GitHub - Zjut-MultimediaPlus/Rainformer: Pytorch implementation code of Rainformer

[引用] C. Bai, F. Sun, J. Zhang, Y. Song and S. Chen, "Rainformer: Features Extraction Balanced Network for Radar-Based Precipitation Nowcasting," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 4023305, doi: 10.1109/LGRS.2022.3162882.


1.背景介绍

           降水短临预报是自然灾害研究中的基本挑战之一。高强度降雨,尤其是暴雨,会导致人们财

产的巨大损失。现有方法通常利用卷积操作提取降雨特征,并增加网络深度以扩展感受野以获得虚

假的全局特征。

            虽然这种方案简单,但只能提取局部降雨特征,导致对高强度降雨不敏感。

      本文提出了一种名为Rainformer的新型降水短临预报框架,其中提出了两个实用组件:

           全局特征提取单元和门控融合单元(Gate Fusion Unit, GFU)。

       前者依赖于基于窗口的多头自注意(Window-based Multi-head Self-attention, W-MSA)机

制,提供了强大的全局特征学习能力,而后者提供了局部和全局特征的平衡融合。

        Rainformer具有简单而高效的架构,并显著提高了降雨预测的准确性,尤其是对高强度降

雨。它为实际应用提供了潜在解决方案。

        实验结果表明,Rainformer在基准数据库上优于七种最先进的方法,并为高强度降雨预测任

务提供了更多见解。


2.新方法

     提出了一种新的降水短临预报网络,名为Rainformer。它主要由特征提取平衡模块(Feature

Extraction Balance Module, FEBM)构建,包括局部特征提取单元、全局特征提取单元和门控

融合单元(GFU)

        据我们所知,所提出的Rainformer是第一个能够提取局部和全局特征的降水短临预报模型。

总之,我们的主要贡献如下:

       我们引入了一种名为Rainformer的新框架用于降水短临预报。它可以分别从雷达回波图中提取

全局和局部特征,并平衡融合这两种特征,增强了模型对强降雨或暴雨的预测能力。

       我们将自注意力引入特征提取过程中。因此,提取了更多的全局特征,对高强度降雨的预测产

生了积极影响。

       我们提出了一种名为GFU的新特征平衡融合机制。它解决了不同尺度特征之间的不平衡,并有

效地提取了它们之间的互补信息。

       所提出的Rainformer在广泛使用的基准数据库上远远优于七种最先进的方法,表现出色。

        Rainformer的整体网络架构如图1所示。Rainformer包括一个编码器(绿色框)和一个解码器

(蓝色框)。它们都有四个阶段。随着阶段的深入,特征的大小变得更小。编码器和解码器都包括

FEBM。FEBM在每个阶段增强了低到中等和高强度的降雨特征。FEBM的详细信息将在下一节介

绍。


3.实验

A. 数据集
       我们的模型和其他最新方法(SOTAs)都是在由荷兰皇家气象研究所(Koninklijk

Nederlands Meteorologisch Instituut,KNMI)在荷兰乌得勒支提出的降水短临预报基准数据集

上进行训练和测试的,并根据进行预处理。

        该数据集包含荷兰地区每5分钟间隔的4,200,000个降雨图。训练集中包含5734个帧序列,测

试集中包含1557个序列。我们从默认的训练集中选择了4000个序列作为训练集剩下的1734个作

为验证集。

          每个序列包括18帧,大小为288×288像素。模型的输入使用九帧序列,另外的九帧作为

基准真实数据(Ground Truth, GT),用于与模型的预测结果进行比较。


4.结果分析

        提出出了一种基于FCN和自注意机制的降水短临预报框架,称为Rainformer,该框架具有平

衡融合特征。实验结果表明,Rainformer在高强度降雨预测方面具有强大的能力。此外,我们设计

的GFU是有效的。Rainformer在基准数据集上表现出优越的性能,并得到了割离研究的支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卿云阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值