gmapping参数介绍

本文介绍了gmapping的重要参数,如粒子数(默认30),它影响算法精度与速度;以及最小匹配得分(默认0.0),该参数决定激光匹配的置信度,设置恰当能平衡噪声与激光匹配效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于gmapping一些参数的说明:

<launch>
  <arg name="scan_topic"  default="scan" /> //laser的topic名称,与自己的激光的topic相对应 
  <arg name="base_frame"  default="base_footprint"/>//机器人的坐标系
  <arg name="odom_frame"  default="odom"/>//世界坐标

  <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen">//启动slam的节点
    <param name="base_frame" value="$(arg base_frame)"/>
    <param name="odom_frame" value="$(arg odom_frame)"/>
    <param name="map_update_interval" value="0.01"/>//地图更新的一个间隔,两次scan
### GMapping SLAM 算法介绍 GMapping 是一种基于概率模型的同步定位与地图构建(SLAM)算法,主要用于二维环境中的移动机器人导航。该方法通过粒子滤波器估计机器人的位姿,并利用激光测距仪的数据更新环境的地图表示[^1]。 #### 粒子滤波框架下的工作流程 在每次接收到新的传感器读数时,GMapping 使用一组加权样本(即粒子)来近似描述后验分布。这些粒子代表了可能的不同姿态假设以及对应的地图状态。对于每一个粒子: - 预测阶段:根据运动学方程预测下一时刻的位置; - 更新阶段:依据当前观测到的距离数据调整权重并重新采样; 最终选取具有最高可能性的那个解作为最优估计结果[^2]。 ### 实现细节 为了便于理解和测试,可以在MATLAB平台上找到开源版本的GMAPPING实现代码。下面给出一段简化版伪代码展示其核心逻辑: ```matlab function gmapping(laser_scans, odometry_data) % 初始化参数... particles = initialize_particles(); for each scan in laser_scans do predict(particles, odometry_data); weights = update_weights(particles, scan); resample(particles, weights); best_pose = find_best_particle(particles); build_map(best_pose, scan); end end ``` 此过程涉及到的关键技术点包括但不限于: - **初始化**:创建初始随机分布的粒子集。 - **预测步**:结合轮式编码器提供的增量信息推断新位置。 - **测量更新**:计算各候选路径下匹配程度得分。 - **重采样机制**:淘汰低质量猜测保留更接近真实情况者。 - **制图操作**:累积有效扫描形成全局坐标系内的障碍物布局图像。 ### 应用实例 实际应用场景中,GMapping被广泛应用于服务型机器人、无人驾驶车辆等领域内完成自主探索任务。例如,在ROS (Robot Operating System)社区中有许多关于如何配置VLP-16 LiDAR配合ALoam或Cartographer等高级功能扩展包来进行复杂场景下的三维重建教程可供学习参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值