ROS Learning-015 learning_tf(编程) 编写一个监听器程序 (Python版)

本文介绍了在ROS Indigo环境下,如何编写一个Python版的TF监听器程序。程序通过监听广播员发布的坐标信息,使一只小海龟跟随另一只小海龟运动。详细步骤包括创建Python脚本,解释代码,赋予执行权限,编写启动脚本并运行。在终端中运行程序,可以观察到小海龟的跟随效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ROS Indigo learning_tf-02 编写一个 监听器 程序 (Python版)

我使用的虚拟机软件:VMware Workstation 11
使用的Ubuntu系统:Ubuntu 14.04.4 LTS
ROS 版本:ROS Indigo


1. 这一节要做的事情:

上一节我们已经编写了一个广播员的程序,下面我们编写一个监听器程序来监听广播员发布的小海龟的坐标系信息:

监听器程序:利用广播员程序广播的坐标信息,在同一个窗口中,有2只小海龟,我们控制 小海龟1 ,让 小海龟2 自动跟随 小海龟1 运行。

2. 程序如何实现:

这个监听器,监听广播员发出的广播(turtle1turtle2 之间坐标系的变化信息),然在同个运算,把结果发布给 turtle2 订阅的 turtle2/cmd_vel 话题上,从而控制 turtle2 运动。

废话少说,开始编程。

2.1. 将路径切换到 learning_tf 软件包,在 nodes 文件夹里创建一个 turtle_tf_listener.py 文件:

$ roscd learning_tf
$ gedit  nodes/turtle_tf_listener.py 

2.2. 将下面的代码添加进去:

#!/usr/bin/env python 

import roslib
roslib.load_manifest('learning_tf')
import rospy
import math
import tf
import geometry_msgs.msg
import turtlesim.srv

if __name__ == '__main
<think>好的,用户想了解如何使用ROS 2创建一个Python包,具体是关于命令ros2 pkg create --build-type ament_python learning_pkg_python的说明和示例。我需要根据提供的引用内容来组织回答。 首先,我得回顾用户提供的引用资料。引用1提到了创建Python包的命令,包括--dependencies参数,可能用户需要知道依赖项的作用。引用2解释了ament_python构建类型使用setup.py,这需要说明文件结构。引用3和4可能涉及服务实现和包的用途,但用户的问题主要是创建包,所以可能重点在步骤和示例上。 用户需要详细的步骤说明和示例。我应该分步骤讲解命令结构、目录结构、关键文件(如setup.py、package.xml)的配置,并给出示例代码。可能还需要解释ament_python和其他构建类型的区别,但用户明确提到Python包,所以可以略过其他类型。 要注意的是,用户可能想知道如何添加依赖和节点,所以需要包括如何修改package.xml和setup.py,以及创建节点的示例。同时,引用3中的服务相关代码可能可以作为扩展内容,但用户的问题主要是创建包,所以示例可能更基础。 需要确保回答符合系统指令:行内数学公式用$...$,独立公式用$$...$$,但这里可能用不上数学公式。使用中文,结构清晰,分步骤,并在最后生成相关问题。 可能的问题点:是否有必要详细解释每个文件和参数的作用?比如setup.py中的entry_points和package.xml中的依赖声明。用户可能需要这些细节来正确配置自己的包。此外,编译和运行命令也是关键步骤,需要包括进去。 最后,根据引用资料,生成相关问题,比如如何添加依赖、如何创建节点、构建类型比较等。需要确保问题相关且有依据。</think>以下是使用ROS 2创建Python包的详细说明及示例: ### 一、创建Python包的命令解析 命令格式: ```bash ros2 pkg create --build-type ament_python <package_name> ``` 以`learning_pkg_python`为例: ```bash ros2 pkg create --build-type ament_python learning_pkg_python --dependencies rclpy ``` - `--build-type ament_python`:指定使用Python构建系统[^2] - `--dependencies`:声明依赖项(如rclpy、std_msgs等) ### 二、包目录结构 生成的目录包含: ``` learning_pkg_python/ ├─ package.xml ├─ setup.py ├─ setup.cfg └─ learning_pkg_python/ └─ __init__.py ``` ### 三、关键文件配置 1. **package.xml** ```xml <exec_depend>rclpy</exec_depend> <!-- 声明运行时依赖 --> <export> <build_type>ament_python</build_type> </export> ``` 2. **setup.py** ```python from setuptools import setup setup( name='learning_pkg_python', version='0.0.0', packages=[...], install_requires=['setuptools'], zip_safe=True, entry_points={ 'console_scripts': [ 'my_node = learning_pkg_python.my_node:main' ], }, ) ``` ### 四、创建节点示例 1. 在包目录中新建`my_node.py`: ```python #!/usr/bin/env python3 import rclpy from rclpy.node import Node class MyNode(Node): def __init__(self): super().__init__('my_node') self.get_logger().info('节点已启动!') def main(args=None): rclpy.init(args=args) node = MyNode() rclpy.spin(node) rclpy.shutdown() if __name__ == '__main__': main() ``` ### 五、编译与运行 ```bash colcon build --packages-select learning_pkg_python source install/setup.bash ros2 run learning_pkg_python my_node ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值