ROS探索总结(十一)——机器视觉

本文介绍了如何在ROS环境中配置并使用Kinect设备获取图像和深度数据,包括安装驱动、测试图像显示、分析图像消息、rviz显示图像及深度数据等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        机器视觉在计算机时代已经越来越流行,摄像头价格越来越低廉,部分集成深度传感器的混合型传感器也逐渐在研究领域普及,例如微软推出的Kinect,而且与之配套的软件功能十分强大,为开发带来了极大的便利。ROS集成了Kinect的的驱动包OpenNI,而且使用OpenCV库可以进行多种多样的图像处理。

        注:本章内容及代码均参考《ROS by Example》书中的第十章。

一、图像显示

        我们从最基础的开始,想办法显示Kinect的图像数据。

1、安装驱动包

       安装步骤很简单:
$sudo apt-get install ros-fuerte-openni-kinect

2、测试

        首先运行kinect节点:
$roslaunch rbx1_vision openni_node_fuerte.launch


        然后我们调用ROS的image_view包来直接显示摄像头的数据库。image_view包的介绍可以参考:
        http://www.ros.org/wiki/image_view。 
$rosrun image_view image_view image:=/camera/rgb/image_color


        我们可以看到弹出了一个独立的图像显示框:

3、分析数据

        下图是我们上面测试中的节点图。

        我们可以使用如下的命令来查看节点之间发送的图像消息是什么样的:
rostopic echo /camera/rgb/image_color


        然后就会看到数据刷刷的在显示,有没有感觉看不清楚,我们使用终端的重定向功能将数据全部存储到文件中:
rostopic echo /camera/rgb/image_color > test


        好了,现在看看文件中是不是已经有数据了,我们来看一下其中的一帧数据:
header: 
  seq: 19285
  stamp: 
    secs: 1370867560
    nsecs: 538447820
  frame_id: camera_rgb_optical_frame
height: 240
width: 320
encoding: rgb8
is_bigendian: 0
step: 960
data: [223, 225, 225, 220, 225, 225……………..

        从数据中我们可以的出来几个很重要的参数,首先是图像的分辨率:240*320,编码的格式是rgb8,也就是说图像应该有240*320=76800个像素,而每个像素由八位的R、G、B三个数据组成,因此我们可以预计下面的data中应该有76800*3=230400个八位的数据了。
        我们可以验证一下data中到底有多少个数据,这个很简单了,数一下就行了,不过好像有点多,我使用的是linux的“wc”命令。首先我一帧数据复制到单独的文件中,每个数据都是用“,”号隔开的,只要计算“,”的数量就知道数据的数量了。

        结果和我们预想的是一样的。知道这个数据格式以后,我们以后就可以直接把其他摄像头的数据装换成这种格式的数据就可以直接在ROS中使用了。

4、rviz显示图像

        我们再来点高级的。rviz是我们经常使用的工具,把图像显示在rviz中才更有应用价值。rviz已经为我们提供好了显示图像的接口,使用非常简单。
        首先按照上一节的方法运行kinect节点,然后打开rviz:
rosrun rviz rviz


        然后修改“Fixed Frame”为/camera_rgb_color,修改“Target Frame”为<Fixed Frame>,接着点击add,选择camera类型。添加成功后选择camera菜单下的Iamge Topic选项,选择/camera/rgb/image_color,确定后下面的显示框内就显示图像了。


二、深度显示

        使用kinect的一大特色就是可以获得传感器的深度数据,也就是物体距离传感器的距离,传说kinect的可识别范围在60cm到10m之间。  

1、显示深度图像

        首先也需要运行Kinect的节点:
roslaunch openni_launch openni.launch


        这一步我使用的是ROS安装openni包中的节点,使用与前面相同的命令运行的节点在后面无法产生深度数据。
然后同样适用iamge_view包就可以简单的显示深度图像了:
rosrun image_view disparity_view image:=/camera/depth/disparity

        

2、rviz中显示深度

        首先运行rviz:
rosrun rviz rviz


        然后修改“Fixed Frame”和“Target Frame”,在add中添加PointCloud2类型,修改“topic”,具体参数如下图所示

----------------------------------------------------------------

欢迎大家转载我的文章。

转载请注明:转自古-月

http://blog.csdn.net/hcx25909

欢迎继续关注我的博客



在摄影中,光源和曝光是两个关键因素,它们共同决定了照片的质量和视觉效果。以下是关于两者对比及如何影响相机拍摄效果的具体分析: --- ### 光源的影响 1. **定义** 光源是指照亮被摄物体的光线来源,包括自然光(如阳光)和人造光(如灯光、闪光灯)。不同的光源会影响画面的颜色、亮度以及阴影的表现。 2. **色温作用** 色温以开尔文 (K) 为单位衡量光源颜色特性。低色温(约2000–3000 K)呈现暖色调(橙黄色),高色温(超过5000 K)则偏向冷色调(蓝白色)。正确设置白平衡能够补偿不同光源带来的色彩偏差。 3. **方向性与强度** - 直射光会产生鲜明的影子并增加纹理细节。 - 柔和散射光减少硬边阴影,适合人像或静物摄影。 - 强烈光源可能造成过曝区域,而弱光源需要更长快门速度或更高ISO值来捕捉足够信息。 4. **动态范围限制** 当场景中有极大亮暗差异时,传感器无法同时记录所有层次细节。此时需借助HDR技术或多张合成解决这一问题。 --- ### 曝光的作用 1. **基本原理** 曝光指感光元件接收多少光线的过程,由三要素组成:光圈大小(f-stop),快门时间(shutter speed),以及感光度(ISO)。这三者相互关联构成所谓的“曝光三角”。 2. **过度/不足曝光后果** 如果曝光过多,则明亮部分失去细节;之若欠曝,则黑暗部位变得死黑无细节。理想状态应保持主体清晰可见且保留尽可能多的信息层阶。 3. **手动调整技巧** - 加大光圈可以让更多光线进入但降低景深。 - 减慢快门能延长进光时间但也容易引入运动模糊。 - 提升ISO虽增强敏感度却伴随噪声增多的风险。 4. **测光模式选择** 不同测光方式适用于各类情况: - 点测光专注于小面积精确控制; - 局部测光兼顾局部与整体关系; - 平均测光综合考虑整个画面平均亮度水平。 --- ### 综合应用实例 假设在一个室内环境中拍摄人物肖像照: - 若仅依赖现有微弱环境照明,则必须适当提高ISO或将快门放慢才能保证正常曝光,但这可能导致噪点增加或者手抖导致的画面不稳。 - 之如果加入辅助人工补光装置比如柔光箱,则即使维持较低灵敏度设定也能获取良好结果,并且还能塑造更具立体感的脸部轮廓线条。 因此,在实际创作过程中往往要结合具体情况灵活运用这两种手段达到最佳表现力。 ---
评论 74
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值