图像局部显著性—点特征(GLOH)

        基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。

        相关介绍:局部特征显著性—点特征(SIFT为例) 

       从特征提取上说,GLOH使用了各向同性平均;从特征选择的角度上说,GLOH使用了PCA方法,体现领域专用同时丧失一定的多领域泛化能力。

五、GLOH特征(梯度位置方向直方图)

       2005年MIko等人提出的SIFT的变子,改进为关键点周围的区间划分,由田字格划分修改为 八象限圆格划分,如下图:

     

       在很大的一个训练集上训练得到PCA模型,再将272维直方图映射到一个128维的描述子。在整体的测试中,比SIFT性能有显著的提高。
       GLOH以 建立训练模型的方式对特征描述施加影响,在一般情况下可以学习到特定领域图像的特征流形分布,比SIFT要好很多;对于更为广泛的应用,其性能也会受到预训练影响。

 

参考资料

            GLOH Wiki百科: https://en.wikipedia.org/wiki/GLOH 
            GLOH原始论文: Krystian Mikolajczyk and Cordelia Schmid "A performance evaluation of local descriptors", IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 27, pp 1615--1630, 2005.
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值