单目相机使用kalibr标定全流程

相机4Hz下使用标定板录取bag包

(可以预先调整相机各项参数如曝光频率等)
(参数在哪里找,我是从驱动相机的launch文件里面找到对应的yaml配置文件,修改对应的yaml配置文件相应的代码就可以改图片大小曝光频率等参数)

#先开相机,然后
rosbag record /topic 

(这里的topic是相机话题,可以先打开相机看一下话题名称再录制)

rostopic list #列出当下所有topic

然后开始采集标定数据
采集单目标定数据时,注意:
1.标定板的位姿尽量丰富一些,让tag尽量均匀分布在图像里
2.将相机视野划为9宫格,在每个宫格里进行【正视、上翻、下翻、左翻、右翻】五种图像帧

下载编译kalibr

mkdir -p Kalibr_ws/src
cd Kalibr_ws/src
git clone --recursive https://github.com/ori-drs/kalibr

(网络不好可以预先下载拷贝过去然后解压)
然后回到kalibr_ws

catkin_make(catkin build -DCMAKE_BUILD_TYPE=Release -j4)

等待大约10分钟
(中间可能会报错缺少库,根据报错下载对应的库·再重新build)

将录好的bag包和标定板参数配置文件 XX.yaml放置在Kalibr_ws文件夹下

source devel/setup.bash
rosrun kalibr kalibr_calibrate_cameras --bag 1.bag --topics /HKRCams/Cam0 --models pinhole-radtan --target april_6x6_max.yaml
#checkboard 文件直接下载对应的或者直接写一个yaml文件
target_type: 'checkerboard' 
targetCols: 11                  
targetRows: 8                  
colSpacingMeters: 0.025               
rowSpacingMeters: 0.025  

 –bag包名 –topics话题名 --models 采用什么相机模型 –traget标定板参数
(需要根据实际进行修改)

     pinhole-fov: 针孔相机模型 + 视场(FOV)畸变模型,适合广角镜头。
     pinhole-radtan:径向和切向畸变模型(常见普通镜头)。
     omni-none: 全向相机无畸变。

校准报告结果(参考)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

校准报告分析总结(参考)

1. 相机系统参数

 相机模型:DistortedPinholeCameraGeometry
     使用带有畸变的针孔模型
 畸变参数:
     [-0.0605, 0.0834, 0.0002, -0.0002],标准差较小,表明畸变估计稳定。
     推测为径向畸变(k1, k2)和切向畸变(p1, p2)的组合(与pinhole-radtan模型一致)。
 内参(投影参数):
     [fx=1276.74, fy=1277.02, cx=649.80, cy=519.71],主点接近图像中心 (假设图像分辨率      为1280x1024),符合预期。
 重投影误差:
     均值接近零,标准差约0.2像素,校准精度较高,属于优秀范围(通常 <0.5像素即可接
     受)。

2. 标定板配置

 类型:棋盘格(checkerboard),8行×11列,方格尺寸0.025米。

3. 位姿估计与误差分析

 位姿数据误差(第二页):
 极坐标误差(第三页):
     o误差随极角(0°~20°)增大略有上升,但整体保持在0.8像素以内。
     o高频区域(如极角>15°)误差稍高,可能与镜头边缘畸变补偿不足有关。
 方位角误差(第四页):
     o误差在-100°~100°范围内分布均匀,无明显方向性偏差,表明校准模型对全方位角适应良好。

4. 重投影误差与异常点

 误差分布(第五页):
     oX/Y方向误差集中在±0.5像素内,仅少数点超出±1.0像素(可能是异常点)。
     o图像索引(0~30)的误差趋势平稳,未出现系统性漂移。
 异常点(第六页):
     o部分角点被移除(图中散点),可能由于运动模糊、标定板遮挡或检测错误导致。
     o异常点数量较少,对整体校准影响有限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值